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The Duffing oscillator: A precise electronic analog chaos demonstrator
for the undergraduate laboratory

B. K. Jones® and G. Trefan
Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom

(Received 6 April 2000; accepted 24 May 2000

A simple electronic circuit is described which can be used in the student laboratory to demonstrate
and study nonlinear effects and chaos. The circuit shows the changes to the dynamical properties of
the system with respect to three control parameters: the applied voltage amplitude and frequency
and the circuit damping. The response voltage and its derivative can be displayed to give the phase
space plot and the bifurcation diagram against any control parameter. The circuit is sufficiently ideal
and stable to allow comparison of its analog output with the output obtained from standard digital
computer simulations. As examples, the routes to chaos with respect to the control parameters and
the bifurcation route to chaos, which follows the Feigenbaum scenario, are showano1@merican
Association of Physics Teachers.

[DOI: 10.1119/1.1336838

[. INTRODUCTION the results obtained by computer simulations or analytical
investigations. As an extra advantage we have found that
When a dynamical system has an inherent instability, fothere are many possible effects to study including many
example because of nonlinearity, its motion can become s@hich have not been reported in the literature.
erratic that for long enough times it becomes unpredictable. Tg study the Duffing oscillator operating under a given set
This noise-like motion of a deterministic dynamical systemof control parameters, we must first characterize the motion
is referred to as chaotic motion. in order to determine if it is regular, chaotic, or a mixture of
Chaols was observed in electronic circuits in the early 20thysth 1n order to obtain information on the global character
century, but its scientific significance became more apparengs ine motion, it is enough to observe the motion in a re-
when the attempts at weather forecasting by computer simyy,ceq space, i.e., to create the so-called Poinsarace of
lations failed to produce reliable long-term predictions due tosations of the motion. The general technique in low-
the C_haotlc_character of the weather anc_JI the modelingensjonal dynamical systems for creating the Poincare
eq_uanons:.Slnce then chaos ?]as b%eng.mlmd n man?/ areas Qfy\rface of sections is to record all the coordinates in a prop-
iﬁf£f§_5 gonrg maastté?iglosmy throug lology to e eCtronlcerly chosen plane at which the phase-space trajectory inter-
' . . sects the plane from a given direction. This defines a set of
One of the most frequently studied model dynamical sys-points on the plane that is called the Poiricareface of

tems that produces chaos is the Duffing oscilldttis. popu- . . . .
larity rests on its simplicity. It models in a one-dimensional sections. '_I'he Poincaruriace of sections qegcnbes the dy-
spacex a particle with massn under a periodic external namics fairly well. For example, if the Pom_casgrface Qf
force F cos(2rft+¢) in a double well potential(x) with sections shows a rggular pattern, the motion is considered
friction proportional to its actual velocity av = — aX. Thus regular. If the Poincarsurface of sections shows no regular-
the equation of motion is ity, the motion is chaotic. If the Poincasairface of sections
consists of mixtures of regular patterns and one or more cha-
mx=—dU(x)/dx+F cog2nft+ ¢) — ax (1a otic seas, the motion is considered a mixture of regular and
chaotic motion with different degrees of chaoticity. Thus, if
the regular patterns dominate in the Poincsugface of sec-
U(x)=— 2(Ax?) + (Bx%). (1b) tions, the motion is said to be weakly chaotic. The electronic
ay of obtaining the reduced dynamical description, i.e., the

The inherent instability, which is the cause of the chaos, is.~7 =, . . .
the hump of the potentidl (x) around its central symmetry omcaresurfgce of sectloqs, is by sampling the output voit-
point at x=0. Whenever the patrticle reaches this unstableage’v(t)’ with the sampling frequency,, of the external

point with nearly zero velocity a slight inbalance between thedriving forceF cos(2rft+¢) at a fixed phase. The sampling

friction and the external force decides the further long-term{€SUlts in a consecutive set of voltages. If these voltages trace
course of the motion. a regular pattern, the Duffing oscillator is in a mode of regu-

Because the Duffing oscillator is so simple, it can be stud!a" motion, while if the sampled voltages are noise-like, the
ied analytically’ or by numerical simulation®1° and one Motion is chaotic. In this system the circuit noise is very

can also build an electrical circuit whose output voltage is @Mall and cannot be detected directly. However, it is a gen-
solution of Eq.(1), i.e., an analog computér:? eral consequence of chaos theory that any disturbance, how-

We note that the Duffing oscillator is not the simplestéver small, will change the system trajectdtiie butterfly
circuit to produce chads:** Our goal here was to build a effect. _ _
circuit which is simple enough to be available for a student The motion of a dynamical system such as the Duffing
laboratory to provide demonstrations of the basic textboolescillator is studied in more detail generally by looking at its
phenomena, shows a well-defined and obvious nonlinearityphase-space, i.e., plotting the velocityt) =x(t) versus
and is accurate enough that its results can be compared wii{t). The electronic version of the phase-space plot is

with
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2 Wells

1 Well Damping Fig. 1. Block diagram of the Duffing

oscillator with its ancilliary circuits.
The input sine signal is passed through
a constant amplitude phase shifter and
Input Monitor a digital precision amplitude controller
to the Duffing oscillator. The output,
Phase Shift Amplitude X, and its derivativex, are passed to
® Qutput X an oscilloscope to observe the phase
Input o /G/ L / Duffing Oscillator space plot. The outpu, of the Duff-
sine . ing oscillator is observed by a sample-
® Output X and-hold(S-H) circuit. In order to plot
the bifurcation diagram with respect to
the changing input voltage control pa-
rameter, this is detected with a preci-
sion rms to dqac-dg converter.

S - H Output

RMS -DC

® |nput level

readily available on a two-beam oscilloscope in te¥  signal conditioning block, the Duffing oscillator analog com-
mode. Depending on the pattern of the phase-space pictupiter circuit itself, and the output signal conditioning block.
the motion can be characterizEiFor example, a phase- First the input sine signal is conditioned in order to control
space pattern showing 1, 2, 4, etc. loops indicates regulafs amplitude and phase precisely, then the Duffing oscillator
motions of period 1, 2, 4, etc., while a scrambled phaseanalog computer unit solves the equation of motion, and fi-
Space indicateS ChaOS. A further useful tOOI to Chal’aCtel’iZﬁa”y the conditioned output Signa' allows the user to observe
the motion is its spectrum, which is observed electronicallythe dynamical quantities of interest.
by a spectrum analyzer. Regular motions are associated with 1o input signal is derived from an external sine wave
discrete spectra of harmonics and subharmonics while chagsqjjiator which is kept at constant amplitude and its fre-
has a continuous spectrum. The mixure of d|scr?]te and congancy is monitored by a digital frequency meter. The input
gnggtur:u S%?/\(/:gri '(;cd,lﬁztedsi’sggzd ;?f?grlh:r::%rlttir?uéitslo or ignal conditioning block consists of a constant amplitude
P P P Phase shifter and a digital amplitude attenuator together with

indicates the degree of chaoticity of the motion. . . .
This article describes an electronic circuit whose time-2" 8C-dC Converter to give a measure of the signal size. Here
dependent output voltag&(t) is proportional to the solution, we note only that the amplitude attenuator can control the

x, of EQ. (1). The circuit is described in detail in Sec. Il. In amplitude with 0.3—4 mV rms accuracy for an amplitude of

Sec. Ill, illustrations are given of the results of investigations3, v for the input siglnaIF cos(2rft+¢). The use of 'this
on the Poincaresurface of sections, the phase-space p|0tsg|g|tal attenuator provides a very stable and reproducible set-

and the parameter space diagrams. These are compared withg Which is important for good results from the system. The
the results of computer simulations in the last section. ~ Phase-shiftis provided to make the display easier to interpret
and its use will be described later. The precision ac-dc con-

Il. CIRCUIT DESCRIPTION verter gives an analog measure of the input signal amplitude
for use as a variable in displays or as a measure using a
The block diagram of the circuit is shown in Fig. 1. The DVM.
design consists of the following functional blocks: the input The block diagram of the Duffing oscillator analog com-

—e Output X
x* 1K, —47x* 1K, -47x° 1 KK,
— o I M
4.7
o |+ | -] 1] x El i
X x Fig. 2. The block diagram of the Duf-
RC’ - X fing oscillator circuit itelf, i.e., the cir-
K, cuit that solves the Duffing equation
. (3). The nonlinear term is generated
?JFF for single well by two consecutive multiplications
7< and the double integration is generated
by two active integrators. There is also
Output X [ the addition of damping.
G
N
——————a—
RC A cos ot Input sine
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Fig. 3. Detailed circuit diagram of the Duffing oscillator. The integrators are built from low noise op-amps LF356, the multipliers are precisgpn anal
multipliers AD534, and the damping is applied using a precision helipot.

Input sine from Amplitude

>

puter unit is shown in Fig. 2. It is a feedback loop. If we The signalx?/K; is amplified yielding— 4.7x3/K,, which is
follow the signal from the bottom left corner on the block fed to a multiplier whose other input is, thus yielding
diagram, one can see that the precisely conditioned input 4 7x3/K,K,, where K, is a present value that we set to
signal F cos(2rft+¢) is added to the linear termand the k=10, We emphasize here that the circuit was designed to
nonlinear term—4.7%/K,K, and is then integrated. Since pe a precise circuit so that the op-amps were carefully se-
this signal is the signal before final integration to become |ected to be low-noise op-amps LF356. Note also that the
it is the time derivativex of the solutionx. Addlng, —aX to dampmg signa|— aX is generated using a low-noise op-amp
signalx and integrating it again one obtains the solution | F356 and it is variable using a precision helipot. The vari-
The nonlinear component signal is gained from the two conability results in a value ofr that can change from 0 to 1
secutive multiplications. The output signal conditioning with a precision of 0.001 read on the dial. The inductance of
block consists of the sample-and-hd@B-H) circuit. the wire-wound potentiometer may introduce small phase
The detailed circuit diagram of the Duffing oscillator ana- shifts which may prevent very high precision simulation. The
log computer unit is shown in Fig. 3. Starting the circuit multiplier ICs are precision analog multipliers AD534.
analysis in the bottom left corner, one can see that the input The equation of motion from the above circuit analysis is
signal F cos(2rft+ ¢) is added to the linear term and the . 1 , 1
nonlinear term—4.7x%/K,K, using an operational amplifier %= —a(RC)7X+(2.7x2.2XRC'RCXK,K2) "X

(op-amp and is then integrated with a time constant RC, —4.7(2.7XRC'RCX K K,) ~1x3
where R=10k() and C=5.21 nF. The output of the previ- ) .
ously mentioned op-amp yields the time derivativef the +(RC'RC)"“F cog2wft+ ¢). 2

solution x, sincex is necessary to observe the phase'SpaC%ubstituting the actual values oERLOKQ, C=5.21nF, C
signal and is therefore connected to a monitoring point. The_ 4 g5 \r and K=K,=10, the equation of motion reads
signal x is led to another op-amp where it is added to the ’ ’

damping signal- aX and is integrated with a time constant X=— ax2.06x 10°x+0.666x 10°x— 0.689x 10'x3

RC’' where I%l(_)kQ and (:’_:4.85 nF. The output _of the +3.95< 10PF cog 2ft+ ). &)
second op-amp is the solution The nonlinear term is cre-
ated from the solution. First, a multiplier IC provides®K,  The circuit analysis yields the natural frequenigy of the
where K is a present value. In our circuit it is set tq&10.  circuit. The natural frequency can be computed from &gy.
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since Eg.(1b) has two potential minima at positions,

=+ (A/B)¥? and the natural frequency of the motion is the cob
frequencyf  of the small amplitude simple harmonic motion 1 ey T
of a particle at the bottom of either of the potential wells. LR
The two stable points can be seen by applying simple im- T
pulses to the input in order to switch the dc output level. The
positions can be verified from the equations. The natural fre- 2
guencyfy is thus given from the second-order coefficient of e, ';?

the Taylor series expansion of potential given by Eth) L .
aroundxg by 3(2mfo)?=3[d*V/dx’], . Since the second- STESCIIEAS CAETIT "
order coefficient of the Taylor series expansion aroupd 2 . . .
is [d°V/dx®], =2 A, the natural frequency isfg 00 02 o4 0s os 10

. . . T (@) Damping Coefficient «
=(2 A)Y%27, which is fo=1.84kHz in our circuit. The
natural frequency, can be measured by setting the damping
coefficient toa=0, and with a low-input sine signal ampli- } .
tude one changes the frequency from 0 to 5 kHz while ob- S
serving the amplitude of the output signal. The frequency at " v
which the amplitude reaches its highest value at the lowest
input amplitude is the natural frequency. We found that at
input voltages 0.15-0.2 V rms, the natural frequency is 1.83
kHz. The significance of determining the natural frequency
lies in the fact that in exploring the dynamical responses of —
the Duffing oscillator fully, one has to investigate the output ’
signal while keeping the drive signal frequency within sepa-
rate dynamical regimes near, below, or above the natural 00 05 10 15 20 25
frequencyfy. (b) Input sine voltage, rms [V]

S-H output [V}

S-H output [V]
H

Fig. 4. Route to chaos via a period bifurcating cascéaeThe two control
parameters kept fixed are input volta§& =1.8V rms and frequency

During the experiments the output signals should be moni= 3.6 kHz while the control parameter dampiagchanges from 0 to 1(b)

df . i - oo h . IThe two control parameters kept fixed are the input voltage frequéncy
tored for signs of saturation. By monitoring the output signa =3.6 kHz and damping parameter=0.11 while changing control param-

V(t), proportional tox, and the applied input drive signal eter input voltage=* from 0.2 V rms to the level when the output signal is
F cos(2rft+ ¢) before the phase shifter and attenuator on esaturated aF* =2.0 V rms.

double beam oscilloscope, one can compare their frequen-
cies, amplitudes, and their phases. Similarly the time deriva-
tive x may be compared with the input signal. The oscillo-

scope is used in th&-Y (Lissajous mode. The phase shift depends on the amplitudeand the frequencyof the exter-

circuit has been incorporated to set a convenient relativ : : : .
. . . ; 2rft+ -
phase between the input and output signals in order to clarn%.al input signalF cos(2sft+ ¢), and on the damping coeffi

the pattern. The phase shift is frequency dependent so that jenta of the circuit, the parametefs, f, « are called control

must only be used on the pure sine wave of the input signaP2‘ameters. o L
y P P 9 The study of the circuit performance starts with fixing two

Monitoring the time derivativ&/(t) of the output signal ver- ot of the three control parameters and changing only one in
susV(t) one observes the phase-space plot of the motioryrder to observe how the character of the motion changes.
The phase-space plot with 1 loop is a simple periodic motiorFor example, fiX andf, changen, and observe the character
or motion of period 1, with 2 loops period 2, with 4 loops of the motion if it is periodic and with what period or chaotic
period 4, etc. The phase-space plot with infinitely manyfylly or weakly. In order to do this efficiently, we use the
loops we term chaos. We term the motion full chaos wherpyit-in sample-and-hold circuit which samples the output
the phase-space plot looks completely scrambled and weakgfgnal\v/(t) with the frequencyf and phasep of the external
chaos when the phase-space plot consists of infinitely manyyiing signalF cos(2ft+¢) so that for a motion of period
loops sticking to a basin of attraction, the so-called strangq e sample-and-hold circuit gives one constant voltage, for
attractor. _ _ a motion of period 2 it gives two distinct voltages, for a
In order j[O double-check our mterpretatlon of the CharaCtanotion of period 4 it gives four distinct voltages, etc. For a
of the motion, we lead the output signé(t) to an analog  chaotic motion it gives infinitely many voltages. Every dis-

spectrum analyser HP3582A. The spectrum of the motion oOfinct voltage appears a dot on tieaxis of the oscilloscope

period 1 has a peak at frequerfcyeriod 2 at frequenc§/2,  jn the X-Y mode. Thus by sweeping the damping parameter,
period 4 at frequency/4, etc. Since it is a nonlinear circuit, j.e., the control paramete;, through all its possible values,
there are also reflections of the spectrum at higher harmoniage can observe how the character of the motion changes
2f, 3f, 4f etc. of the drive signal. The motion with full with respect to the damping. We found that keeping the rms
chaos has a continuous, although not constant, spectrurimput signal levelF* =1.8V rms and frequenc{= 3.6 kHz
while weaker chaos has a spectrum with definite peaks athile changinga from 1 to 0, the output voltage becomes
frequenciesf, /2, f/4, etc. emerging from the continuous chaotic via a consecutive period of bifurcations as shown in
background. Fig. 4. From the values otr where consecutive bifurca-

[ll. RESULTS

Since the output signal, i.e., the character of the motion,
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tions occur, i.e., fromu,a,,a3,a4,..., onebuilds up the [
first few elements of a serie$, 5,,53,... defined by sl ,é
r 1C
' C
1= (= apl(as—az), 8=(as—a)l(as—as), 2 e
4 é 2| ,'3\--/ ccec
_ _ . P /5588888
Theoretically the seried;,d,,ds,... converges to a univer- & [ ,..-c3scC6CC
sal numbers;,;=4.669 20... independent of the dynamical S } J/ccccece g g g g f
details of the systert From Fig. 4b) we found thata; 2 1"1"1"1\__,/5'(;";'(; 2 g 2 § 2 CC442
=0.592,@,=0.648,a3=0.300, anda,=0.292. From these = lyi1111¢cccs4c31 111222
valuess; =1.14 ands,=3.77. il 2zt ca
Since the input signal amplitude is controlled digitally ol 1 I T
and stably, it can be changed in very small steps of about ° k 2
AF=0.3—4 mV. This refinement allows us to investigate the ® Input Frequency [kHz]
character of the motion with respect to the control parameter F
F. Fixing f=3.6kHz anda=0.11 and sweeping witlF* sL
=F/(2)*? from 0.2 V rms to the level when the output sig-
nal V(t) is saturated aE* =2.0V rms, we found that a pe- S
riod bifurcation cascade leading to chaos is followed by a set &
of period 4 motion near 1.8 V becoming chaotic againas £2¢ .57
shown in Fig. 4b). The series of period doubling bifurca- & S cc22
tions 8;,8,,8s,... is built up from the control parameters = C ccgis
Fl,FZ,F3,... by ; P . /’é c ccc22
=3 TPV S N /,’ccc08422
01=(Fa—=F)/(F3—F3) SRR 111\\"/,(:-.-(,:0(3002222;::22:
1= (Fa=Fol(Fa=Fa), 5 1T 11 114c et 11 110111
O
5,=(F3=F2)/(F4—=F3),.... (b) Input Frequency [kHz]

We found from Fig. 4b) that F;=0.600, F,=0.318, F5 Fig. 5. Parameter space plots in which the damping coefficient is kept fixed

=0.300. ancF,=0.292. and. correspondin |§ =15.7 and at «=0.11 while the input voltagé* and its frequency are changed. For
’ ’ 4 ' ! ! P 9y ) parameters above the dashed line the circuit voltage level saturates at one or

0,=2.25. Again the consecutive series 8f should con-  more places. The natural frequency of the circuit is 1.83 kelzMeasured
verge t0d;;;=4.669 20.... The values found féy},; in these  parameter space pldb) Computed parameter space plot. Key: C—chaotic,
two cases are reasonable in view of the restricted number gf—period 1, 2—period 2, 4—period 4, etc. motion.

terms in the convergence. The reason for the limitation in the

number of terms observed in this circuit is the poor noise in

analog multipliers. They should be used with a large signal ilshows that for low-amplitude input signals the Duffing oscil-
possible. Note that for the latter example, tevoltage of  |ator always executes a period 1 motion no matter what the
the display can be taken from the ac-dc converter so that griving frequency is. It also shows that for input driving
direct display is possible. In this case the digital attenuator isrequencies well below the natural frequency, the Duffing
set to full transfer and an analog potentiometer is used t@scillator typically follows the drive with a period 1 motion.
slowly change the input signal amplitude. When the potentiyyhen the Duffing oscillator is driven with a signal near to its
ometer is used as the control parameter, the bifurcation digyatural frequency1.84 kH2, it responds sensitively in the
gram needs to be plotted by hand. . sense that for a very small change in any control parameter
A more informative way of presenting information about the character of the motion rapidly changes. One can also see
the character of the motion is to fix one of the control Pa-from the parameter space piot that when the Duffing oscilla-
rameters out of the three and vary the other two control pator is driven with a signal of higher frequency than its natural
rameters while continuing to p|0t In Symbols the character Offrequency’ for increasing input Voitages it reaches chaos
the motion for every pair of the varied control parameters. Infrom period 1 motion typically via consecutive period bifur-
this way we build a two-dimensional “topological” plot cations. It is also interesting to note that the borders of cha-
which shows the regions of chaotic and regular motionsotic and regular motions are not sharply defined in the pa-
This two-dimensional plot is called the parameter space diarameter space diagram.
gram. One of the advantages of the parameter space diagramThe results shown in Fig.(5) show the computed param-
is that it indicates different routes to chaos with respect to Qter space diagram for the same values of the control param-
changing control parameter, not only the route via consecueters that were used in Fig(éh. We used the program pack-
tive bifurcations. In the example of Fig(®, the parameter age by Korsctet al.® plotted the computed phase space data
phase diagram obtained by keeping the damping coefficierin the screen, and from this we decided the character of the
a constant atv=0.11 is plotted while the input rms ampli- motion. In order to use the program package, one has to
tudeF* changes fronF* =0.2V rms toF*=3.0V rms and  rescale the equation of motion of E&). The rescaling rests
the frequency of the input signal varies from 0.2 to 4 kHz.on the idea that we measure the frequency in units of 10 kHz
The regions of regular and chaotic motions are easily idenand measure the time in units ¢f of a millisecond. With
tified from their symbols. The parameter space diagranthis rescaling the equation of motion E®) becomes
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K= — a X 2.06(+0.666(— 0.068%3 A few texts which have also been found to be of interest in

. the classroom are qeieven, although not so directly relevant to
+5.60F* cog2mft+ @), (6)  the circuit used hertf=2°

whereF* denotes the rms of the input voltage signal mea-
sured in volts, andF* is related to the input voltage ampli- V. CIRCUIT DETAILS

tude F by F=2"2F*. We can see that Figs(& and 5b) Full circuit diagrams and suggestions for possible en-

agree reasonably well in the sense that both parameter spaggncements are available from the corresponding author.

plots have massive islands of chaotic motions and massive

islands of regular motions for the same value of the CO'_““’!ACKNOWLEDGMENTS

parameters. For such systems, very close agreement is un-
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