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The Duffing oscillator: A precise electronic analog chaos demonstrator
for the undergraduate laboratory

B. K. Jonesa) and G. Trefan
Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom

~Received 6 April 2000; accepted 24 May 2000!

A simple electronic circuit is described which can be used in the student laboratory to demonstrate
and study nonlinear effects and chaos. The circuit shows the changes to the dynamical properties of
the system with respect to three control parameters: the applied voltage amplitude and frequency
and the circuit damping. The response voltage and its derivative can be displayed to give the phase
space plot and the bifurcation diagram against any control parameter. The circuit is sufficiently ideal
and stable to allow comparison of its analog output with the output obtained from standard digital
computer simulations. As examples, the routes to chaos with respect to the control parameters and
the bifurcation route to chaos, which follows the Feigenbaum scenario, are shown. ©2001 American

Association of Physics Teachers.
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I. INTRODUCTION

When a dynamical system has an inherent instability,
example because of nonlinearity, its motion can become
erratic that for long enough times it becomes unpredicta
This noise-like motion of a deterministic dynamical syste
is referred to as chaotic motion.

Chaos was observed in electronic circuits in the early 2
century,1 but its scientific significance became more appar
when the attempts at weather forecasting by computer si
lations failed to produce reliable long-term predictions due
the chaotic character of the weather and the mode
equations.2 Since then chaos has been found in many area
science from astronomy through biology to electron
circuits3–5 and materials.

One of the most frequently studied model dynamical s
tems that produces chaos is the Duffing oscillator.6 Its popu-
larity rests on its simplicity. It models in a one-dimension
spacex a particle with massm under a periodic externa
force F cos(2pft1f) in a double well potentialU(x) with
friction proportional to its actual velocity2av52a ẋ. Thus
the equation of motion is

mẍ52dU~x!/dx1F cos~2p f t1f!2a ẋ ~1a!

with

U~x!52 1
2~Ax2!1 1

4~Bx4!. ~1b!

The inherent instability, which is the cause of the chaos
the hump of the potentialU(x) around its central symmetr
point at x50. Whenever the particle reaches this unsta
point with nearly zero velocity a slight inbalance between
friction and the external force decides the further long-te
course of the motion.

Because the Duffing oscillator is so simple, it can be st
ied analytically,7 or by numerical simulations,8–10 and one
can also build an electrical circuit whose output voltage i
solution of Eq.~1!, i.e., an analog computer.7,11,12

We note that the Duffing oscillator is not the simple
circuit to produce chaos.13,14 Our goal here was to build a
circuit which is simple enough to be available for a stud
laboratory to provide demonstrations of the basic textbo
phenomena, shows a well-defined and obvious nonlinea
and is accurate enough that its results can be compared
464 Am. J. Phys.69 ~4!, April 2001 http://ojps.aip.org/aj
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the results obtained by computer simulations or analyt
investigations. As an extra advantage we have found
there are many possible effects to study including ma
which have not been reported in the literature.

To study the Duffing oscillator operating under a given
of control parameters, we must first characterize the mo
in order to determine if it is regular, chaotic, or a mixture
both. In order to obtain information on the global charac
of the motion, it is enough to observe the motion in a
duced space, i.e., to create the so-called Poincare´ surface of
sections of the motion. The general technique in lo
dimensional dynamical systems for creating the Poinc´
surface of sections is to record all the coordinates in a pr
erly chosen plane at which the phase-space trajectory in
sects the plane from a given direction. This defines a se
points on the plane that is called the Poincare´ surface of
sections. The Poincare´ surface of sections describes the d
namics fairly well. For example, if the Poincare´ surface of
sections shows a regular pattern, the motion is conside
regular. If the Poincare´ surface of sections shows no regula
ity, the motion is chaotic. If the Poincare´ surface of sections
consists of mixtures of regular patterns and one or more c
otic seas, the motion is considered a mixture of regular
chaotic motion with different degrees of chaoticity. Thus,
the regular patterns dominate in the Poincare´ surface of sec-
tions, the motion is said to be weakly chaotic. The electro
way of obtaining the reduced dynamical description, i.e.,
Poincare´ surface of sections, is by sampling the output vo
age, V(t), with the sampling frequency,f, of the external
driving forceF cos(2pft1f) at a fixed phase. The samplin
results in a consecutive set of voltages. If these voltages t
a regular pattern, the Duffing oscillator is in a mode of reg
lar motion, while if the sampled voltages are noise-like, t
motion is chaotic. In this system the circuit noise is ve
small and cannot be detected directly. However, it is a g
eral consequence of chaos theory that any disturbance, h
ever small, will change the system trajectory~the butterfly
effect!.

The motion of a dynamical system such as the Duffi
oscillator is studied in more detail generally by looking at
phase-space, i.e., plotting the velocityv(t)5 ẋ(t) versus
x(t). The electronic version of the phase-space plot
464p/ © 2001 American Association of Physics Teachers
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Fig. 1. Block diagram of the Duffing
oscillator with its ancilliary circuits.
The input sine signal is passed throug
a constant amplitude phase shifter an
a digital precision amplitude controlle
to the Duffing oscillator. The output,
x, and its derivative,ẋ, are passed to
an oscilloscope to observe the pha
space plot. The output,x, of the Duff-
ing oscillator is observed by a sample
and-hold~S-H! circuit. In order to plot
the bifurcation diagram with respect to
the changing input voltage control pa
rameter, this is detected with a prec
sion rms to dc~ac-dc! converter.
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readily available on a two-beam oscilloscope in theX-Y
mode. Depending on the pattern of the phase-space pic
the motion can be characterized.13 For example, a phase
space pattern showing 1, 2, 4, etc. loops indicates reg
motions of period 1, 2, 4, etc., while a scrambled pha
space indicates chaos. A further useful tool to characte
the motion is its spectrum, which is observed electronica
by a spectrum analyzer. Regular motions are associated
discrete spectra of harmonics and subharmonics while ch
has a continuous spectrum. The mixture of discrete and c
tinuous spectra indicates mixed motion, and the ratio
spectral powers of the discrete part to the continuous
indicates the degree of chaoticity of the motion.

This article describes an electronic circuit whose tim
dependent output voltageV(t) is proportional to the solution
x, of Eq. ~1!. The circuit is described in detail in Sec. II. I
Sec. III, illustrations are given of the results of investigatio
on the Poincare´ surface of sections, the phase-space pl
and the parameter space diagrams. These are compared
the results of computer simulations in the last section.

II. CIRCUIT DESCRIPTION

The block diagram of the circuit is shown in Fig. 1. Th
design consists of the following functional blocks: the inp
465 Am. J. Phys., Vol. 69, No. 4, April 2001
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signal conditioning block, the Duffing oscillator analog com
puter circuit itself, and the output signal conditioning bloc
First the input sine signal is conditioned in order to cont
its amplitude and phase precisely, then the Duffing oscilla
analog computer unit solves the equation of motion, and
nally the conditioned output signal allows the user to obse
the dynamical quantities of interest.

The input signal is derived from an external sine wa
oscillator which is kept at constant amplitude and its f
quency is monitored by a digital frequency meter. The inp
signal conditioning block consists of a constant amplitu
phase shifter and a digital amplitude attenuator together w
an ac-dc converter to give a measure of the signal size. H
we note only that the amplitude attenuator can control
amplitude with 0.3–4 mV rms accuracy for an amplitude
3 V for the input signalF cos(2pft1f). The use of this
digital attenuator provides a very stable and reproducible
ting which is important for good results from the system. T
phase-shift is provided to make the display easier to inter
and its use will be described later. The precision ac-dc c
verter gives an analog measure of the input signal amplit
for use as a variable in displays or as a measure usin
DVM.

The block diagram of the Duffing oscillator analog com
d

d
o

Fig. 2. The block diagram of the Duf-
fing oscillator circuit itelf, i.e., the cir-
cuit that solves the Duffing equation
~3!. The nonlinear term is generate
by two consecutive multiplications
and the double integration is generate
by two active integrators. There is als
the addition of damping.
465B. K. Jones and G. Trefan



anal
Fig. 3. Detailed circuit diagram of the Duffing oscillator. The integrators are built from low noise op-amps LF356, the multipliers are precisionog
multipliers AD534, and the damping is applied using a precision helipot.
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puter unit is shown in Fig. 2. It is a feedback loop. If w
follow the signal from the bottom left corner on the bloc
diagram, one can see that the precisely conditioned in
signal F cos(2pft1f) is added to the linear termx and the
nonlinear term24.7x3/K1K2 and is then integrated. Sinc
this signal is the signal before final integration to becomex,
it is the time derivativeẋ of the solutionx. Adding, 2a ẋ to
signal ẋ and integrating it again one obtains the solutionx.
The nonlinear component signal is gained from the two c
secutive multiplications. The output signal conditionin
block consists of the sample-and-hold~S-H! circuit.

The detailed circuit diagram of the Duffing oscillator an
log computer unit is shown in Fig. 3. Starting the circu
analysis in the bottom left corner, one can see that the in
signal F cos(2pft1f) is added to the linear termx and the
nonlinear term24.7x3/K1K2 using an operational amplifie
~op-amp! and is then integrated with a time constant R
where R510 kV and C55.21 nF. The output of the previ
ously mentioned op-amp yields the time derivativeẋ of the
solution x, since ẋ is necessary to observe the phase-sp
signal and is therefore connected to a monitoring point. T
signal ẋ is led to another op-amp where it is added to t
damping signal2a ẋ and is integrated with a time consta
RC8 where R510 kV and C854.85 nF. The output of the
second op-amp is the solutionx. The nonlinear term is cre
ated from the solutionx. First, a multiplier IC providesx2/K1

where K1 is a present value. In our circuit it is set to K1510.
466 Am. J. Phys., Vol. 69, No. 4, April 2001
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The signalx2/K1 is amplified yielding24.7x2/K1, which is
fed to a multiplier whose other input isx, thus yielding
24.7x3/K1K2, where K2 is a present value that we set
K2510. We emphasize here that the circuit was designe
be a precise circuit so that the op-amps were carefully
lected to be low-noise op-amps LF356. Note also that
damping signal2a ẋ is generated using a low-noise op-am
LF356 and it is variable using a precision helipot. The va
ability results in a value ofa that can change from 0 to 1
with a precision of 0.001 read on the dial. The inductance
the wire-wound potentiometer may introduce small pha
shifts which may prevent very high precision simulation. T
multiplier ICs are precision analog multipliers AD534.

The equation of motion from the above circuit analysis

ẍ52a~RC8!21ẋ1~2.732.23RC8RC3K1K2!
21x

24.7~2.73RC8RC3K1K2!
21x3

1~RC8RC!21F cos~2p f t1f!. ~2!

Substituting the actual values of R510 kV, C55.21 nF, C8
54.85 nF, and K15K2510, the equation of motion reads

ẍ52a32.063104ẋ10.6663108x20.6893107x3

13.953108F cos~2p f t1f!. ~3!

The circuit analysis yields the natural frequencyf 0 of the
circuit. The natural frequency can be computed from Eq.~1!
466B. K. Jones and G. Trefan
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since Eq. ~1b! has two potential minima at positionsx0

56(A/B)1/2 and the natural frequency of the motion is t
frequencyf 0 of the small amplitude simple harmonic motio
of a particle at the bottom of either of the potential wel
The two stable points can be seen by applying simple
pulses to the input in order to switch the dc output level. T
positions can be verified from the equations. The natural
quencyf 0 is thus given from the second-order coefficient
the Taylor series expansion of potential given by Eq.~1b!
aroundx0 by 1

2(2p f 0)25 1
2@d2V/dx2#x0

. Since the second

order coefficient of the Taylor series expansion aroundx0

is @d2V/dx2#x0
52 A, the natural frequency is f 0

5(2 A)1/2/2p, which is f 051.84 kHz in our circuit. The
natural frequencyf 0 can be measured by setting the damp
coefficient toa50, and with a low-input sine signal ampl
tude one changes the frequency from 0 to 5 kHz while
serving the amplitude of the output signal. The frequency
which the amplitude reaches its highest value at the low
input amplitude is the natural frequency. We found that
input voltages 0.15–0.2 V rms, the natural frequency is 1
kHz. The significance of determining the natural frequen
lies in the fact that in exploring the dynamical responses
the Duffing oscillator fully, one has to investigate the outp
signal while keeping the drive signal frequency within sep
rate dynamical regimes near, below, or above the nat
frequencyf 0 .

III. RESULTS

During the experiments the output signals should be mo
tored for signs of saturation. By monitoring the output sign
V(t), proportional tox, and the applied input drive signa
F cos(2pft1f) before the phase shifter and attenuator o
double beam oscilloscope, one can compare their frequ
cies, amplitudes, and their phases. Similarly the time der
tive ẋ may be compared with the input signal. The oscil
scope is used in theX-Y ~Lissajous! mode. The phase shif
circuit has been incorporated to set a convenient rela
phase between the input and output signals in order to cla
the pattern. The phase shift is frequency dependent so th
must only be used on the pure sine wave of the input sig
Monitoring the time derivativeV̇(t) of the output signal ver-
sus V(t) one observes the phase-space plot of the mot
The phase-space plot with 1 loop is a simple periodic mot
or motion of period 1, with 2 loops period 2, with 4 loop
period 4, etc. The phase-space plot with infinitely ma
loops we term chaos. We term the motion full chaos wh
the phase-space plot looks completely scrambled and we
chaos when the phase-space plot consists of infinitely m
loops sticking to a basin of attraction, the so-called stra
attractor.

In order to double-check our interpretation of the charac
of the motion, we lead the output signalV(t) to an analog
spectrum analyser HP3582A. The spectrum of the motion
period 1 has a peak at frequencyf, period 2 at frequencyf /2,
period 4 at frequencyf /4, etc. Since it is a nonlinear circui
there are also reflections of the spectrum at higher harmo
2 f , 3f , 4f etc. of the drive signal. The motion with fu
chaos has a continuous, although not constant, spect
while weaker chaos has a spectrum with definite peak
frequencies,f, f /2, f /4, etc. emerging from the continuou
background.
467 Am. J. Phys., Vol. 69, No. 4, April 2001
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Since the output signal, i.e., the character of the moti
depends on the amplitudeF and the frequencyf of the exter-
nal input signalF cos(2pft1f), and on the damping coeffi
cienta of the circuit, the parametersF, f ,a are called control
parameters.

The study of the circuit performance starts with fixing tw
out of the three control parameters and changing only on
order to observe how the character of the motion chang
For example, fixF andf, changea, and observe the characte
of the motion if it is periodic and with what period or chaot
fully or weakly. In order to do this efficiently, we use th
built-in sample-and-hold circuit which samples the outp
signalV(t) with the frequencyf and phasef of the external
driving signalF cos(2pft1f) so that for a motion of period
1 the sample-and-hold circuit gives one constant voltage,
a motion of period 2 it gives two distinct voltages, for
motion of period 4 it gives four distinct voltages, etc. For
chaotic motion it gives infinitely many voltages. Every di
tinct voltage appears a dot on theY axis of the oscilloscope
in the X-Y mode. Thus by sweeping the damping parame
i.e., the control parameter,a, through all its possible values
we can observe how the character of the motion chan
with respect to the damping. We found that keeping the r
input signal levelF* 51.8 V rms and frequencyf 53.6 kHz
while changinga from 1 to 0, the output voltage become
chaotic via a consecutive period of bifurcations as shown
Fig. 4~a!. From the values ofa where consecutive bifurca

Fig. 4. Route to chaos via a period bifurcating cascade.~a! The two control
parameters kept fixed are input voltageF* 51.8 V rms and frequencyf
53.6 kHz while the control parameter dampinga changes from 0 to 1.~b!
The two control parameters kept fixed are the input voltage frequencf
53.6 kHz and damping parametera50.11 while changing control param
eter input voltageF* from 0.2 V rms to the level when the output signal
saturated atF* 52.0 V rms.
467B. K. Jones and G. Trefan
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tions occur, i.e., froma1 ,a2 ,a3 ,a4 ,..., onebuilds up the
first few elements of a seriesd1 ,d2 ,d3 ,... defined by

d15~a22a1!/~a32a2!, d25~a32a2!/~a42a3!.
~4!

Theoretically the seriesd1 ,d2 ,d3 ,... converges to a univer
sal numberd inf54.669 20... independent of the dynamic
details of the system.15 From Fig. 4~b! we found thata1

50.592,a250.648,a350.300, anda450.292. From these
valuesd151.14 andd253.77.

Since the input signal amplitudeF is controlled digitally
and stably, it can be changed in very small steps of ab
DF50.3– 4 mV. This refinement allows us to investigate t
character of the motion with respect to the control param
F. Fixing f 53.6 kHz anda50.11 and sweeping withF*
5F/(2)1/2 from 0.2 V rms to the level when the output sig
nal V(t) is saturated atF* 52.0 V rms, we found that a pe
riod bifurcation cascade leading to chaos is followed by a
of period 4 motion near 1.8 V becoming chaotic again
shown in Fig. 4~b!. The series of period doubling bifurca
tions d1 ,d2 ,d3 ,... is built up from the control parameter
F1 ,F2 ,F3 ,... by

d15~F22F1!/~F32F2!,
~5!

d25~F32F2!/~F42F3!,... .

We found from Fig. 4~b! that F150.600, F250.318, F3

50.300, andF450.292, and, correspondingly,d1515.7 and
d252.25. Again the consecutive series ofdn should con-
verge tod inf54.669 20... . The values found ford inf in these
two cases are reasonable in view of the restricted numbe
terms in the convergence. The reason for the limitation in
number of terms observed in this circuit is the poor noise
analog multipliers. They should be used with a large signa
possible. Note that for the latter example, theX voltage of
the display can be taken from the ac-dc converter so th
direct display is possible. In this case the digital attenuato
set to full transfer and an analog potentiometer is used
slowly change the input signal amplitude. When the pote
ometer is used as the control parameter, the bifurcation
gram needs to be plotted by hand.

A more informative way of presenting information abo
the character of the motion is to fix one of the control p
rameters out of the three and vary the other two control
rameters while continuing to plot in symbols the characte
the motion for every pair of the varied control parameters
this way we build a two-dimensional ‘‘topological’’ plo
which shows the regions of chaotic and regular motio
This two-dimensional plot is called the parameter space
gram. One of the advantages of the parameter space dia
is that it indicates different routes to chaos with respect t
changing control parameter, not only the route via conse
tive bifurcations. In the example of Fig. 5~a!, the parameter
phase diagram obtained by keeping the damping coeffic
a constant ata50.11 is plotted while the input rms ampl
tudeF* changes fromF* 50.2 V rms toF* 53.0 V rms and
the frequency of the input signal varies from 0.2 to 4 kH
The regions of regular and chaotic motions are easily id
tified from their symbols. The parameter space diagr
468 Am. J. Phys., Vol. 69, No. 4, April 2001
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shows that for low-amplitude input signals the Duffing osc
lator always executes a period 1 motion no matter what
driving frequency is. It also shows that for input drivin
frequencies well below the natural frequency, the Duffi
oscillator typically follows the drive with a period 1 motion
When the Duffing oscillator is driven with a signal near to
natural frequency~1.84 kHz!, it responds sensitively in the
sense that for a very small change in any control param
the character of the motion rapidly changes. One can also
from the parameter space plot that when the Duffing osci
tor is driven with a signal of higher frequency than its natu
frequency, for increasing input voltages it reaches ch
from period 1 motion typically via consecutive period bifu
cations. It is also interesting to note that the borders of c
otic and regular motions are not sharply defined in the
rameter space diagram.

The results shown in Fig. 5~b! show the computed param
eter space diagram for the same values of the control par
eters that were used in Fig. 5~a!. We used the program pack
age by Korschet al.,8 plotted the computed phase space d
on the screen, and from this we decided the character of
motion. In order to use the program package, one has
rescale the equation of motion of Eq.~3!. The rescaling rests
on the idea that we measure the frequency in units of 10 k
and measure the time in units of1

10 of a millisecond. With
this rescaling the equation of motion Eq.~3! becomes

Fig. 5. Parameter space plots in which the damping coefficient is kept fi
at a50.11 while the input voltageF* and its frequencyf are changed. For
parameters above the dashed line the circuit voltage level saturates at o
more places. The natural frequency of the circuit is 1.83 kHz.~a! Measured
parameter space plot.~b! Computed parameter space plot. Key: C—chaot
1—period 1, 2—period 2, 4—period 4, etc. motion.
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ẍ52a32.06ẋ10.666x20.0689x3

15.60F* cos~2p f t1f!, ~6!

whereF* denotes the rms of the input voltage signal me
sured in volts, andF* is related to the input voltage ampl
tude F by F521/2F* . We can see that Figs. 5~a! and 5~b!
agree reasonably well in the sense that both parameter s
plots have massive islands of chaotic motions and mas
islands of regular motions for the same value of the con
parameters. For such systems, very close agreement is
likely since exactly comparable values are impossible to
in both systems.

The direct observation of this Duffing oscillator circu
demonstrates a few more interesting phenomena that
have not fully investigated and understood. At certain fix
control parameters~F* 51.2 V rms, f 54.0 kHz, a50.11!,
values of the output of the circuit alternate between cha
and regular motion. It is not clear to us whether these sud
switches between chaotic and regular states of motion re
from an intermittent chaos or are induced by electro
noise. We also found some hysteresis in the sense that w
increasing a control parameter to cause the motion to
through consecutive bifurcations and chaos, the pattern is
reversible. When decreasing the same control parameter
chaos to regular motion transition does not occur at the s
value as the transition from regular to chaotic motion did
increasing the parameter.

IV. CONCLUSIONS

We have described a precise electronic circuit for realiz
the Duffing oscillator analog computer. The electronic circ
is simple enough to be available for undergraduate labor
ries and it is also precise enough to show many interes
phenomena of nonlinear dynamics. The experiment is li
by students.

There is considerable pedagogical value since instant
apparent demonstrations can be made of the basic princ
on a real system. The basic behavior can be seen with
input signal and the system can be changed to one rather
two wells using the switch included. This removes the line
term in Eq.~3!.

There are various ways of using the system for proj
work. We investigated the circuit behavior from the point
view of changing one control parameter only, thus obtain
a route to chaos. We found that the route to chaos fr
periodic motion when it occurs via a period doubling casca
follows the Feigenbaum scenario. We also investigated
circuit by changing two control parameters to build up
topological map of the motion in the so-called parame
space plot. We found that the parameter space plot is
informative representation of the motion in a global sen
since it indicates non-period-bifurcating routes to chaos
it also indicates massive islands of parameter values of
otic or regular motions. We compared our measured res
with the results of computer simulations from a package e
ily available for an undergraduate laboratory and found
reasonable agreement between them. The power of the
tem is such that unreported effects can be readily seen
hence new research projects can be developed.
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A few texts which have also been found to be of interes
the classroom are given, although not so directly relevan
the circuit used here.16–25

V. CIRCUIT DETAILS

Full circuit diagrams and suggestions for possible e
hancements are available from the corresponding author
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