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is a function of its MC (which in turn is related to RH of the
surrounding air) and, to a lesser extent, its temperature. Thus,

ABSTRACT: This work was undertaken to evaluate the accuracy of
wood resistance sensors for measurement of relative humidity and to
identify sources of error in this use. Relative humidity can be expressed
as a function of the logarithm of the sensor’s electrical resistance and
of its temperature. We found that single-point calibration of each sensor
compensates for most between-sensor variation, although care must
be exercised during calibration. With careful calibration readings, error
in relative humidity readings made with these sensors can be limited
to ± 10% relative humidity under most conditions. The literature indi-
cates that a lower degree of error than this is anticipated when electrical
resistance is used to estimate moisture content measurements. Our data
suggest that sorption hysteresis and sensor memory are significant
contributors to this (± 10%) relative humidity error.
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RH at a location can be determined from sensor resistance and
temperature at that location, assuming the relationship between
these three variables is known. In addition to temperature and RH,
sensor MC is influenced by sorption hysteresis [ 4 ], meaning that its
equilibrium MC depends on the direction from which equilibrium is
reached. When these sensors are used to estimate RH, further error
results from the shape of the sorption (or desorption) isotherm for
wood.2 At low and moderate RH levels, the isotherms have low
slopes [ 4-7 ], thus minor errors in estimate of sensor MC can
translate into substantial errors in estimate of RH. In summary,
when these sensors are used to estimate RH rather than MC of
the sensor itself, the value obtained is more useful, but error
associated with the value is anticipated to be of greater magnitude.
The purpose of this work was to evaluate the accuracy of wood 
resistance sensors for measurement of RH  and to identify sources

The wood electric resistance sensor developed at the USDA-
Forest Service, Forest Products Laboratory [ 1 ], has been widely
used for measuring moisture conditions within building compo-
nents. It is not commercially available but is easy and inexpensive
to fabricate. This sensor (Fig. 1), by virtue of its small size, has
a negligible influence on the component being evaluated. Its
response to changing conditions is fairly rapid; TenWolde and
Courville [ 2 ] state that the fastest measured change in moisture
conditions within building components was made with this sen-
sor [ 3 ].

Originally, the sensor was meant to be read with a direct-current
(DC) resistance moisture meter for wood with measurements
reported in terms of percent moisture content (MC). However,
when the sensor is used in or near materials other than wood, MC
of the sensor may be different from that of the material of interest.

For building scientists, relative humidity (RH) is a more useful
value than sensor MC. The RH expresses atmospheric humidity
conditions in a building cavity or in the film of air adjacent to
building materials. The RH is a measure of the degree of saturation
of the air and of material in contact with that air, assuming that

of error.
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Background

Moisture Content, Relative Humidity, and Temperature

An example of the relationship between RH and wood equilib-
rium MC over the range of 55 to 90% RH at 300 and 272 K is
shown in Fig. 2. The data were taken from Table 3–4 of the
Wood Handbook [ 8 ].3 Although a complex polynomial equation
containing terms for temperature and MC more accurately
describes this relationship, it cart be adequately approximated at
a given temperature by the equation

2Sorption (or desorption) isotherms are plots of moisture content of a
material as a function of RH at a given temperature. The isotherms for
most building materials have the shape of a truncated “S” lying on its side.

3The data in Table 3–4 of the Wood Handbook give a single wood
moisture content value for a given set of RH/temperature conditions, and
thus ignore the influence of sorption hysteresis.
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Electric Resistance and Moisture Content

In the hydroscopic range and at a constant temperature, an
approximately inverse linear relationship exists between the loga-
rithm of the DC resistivity of wood and the logarithm of its MC
[ 9 ]. This relationship is the basis for determining wood MC with
DC resistance measurements. For a wood specimen of given size
and grain orientation, the relationship may be expressed as

(2)

where

The coefficient k M is negative and virtually constant among wood
species (Fig. 3).

Electric Resistance and Temperature

At a given MC in the hydroscopic range, an approximately
exponential relationship exists between wood resistivity and tem-
perature. For a wood specimen of given size and grain orientation,
this relationship may be expressed as

(3)

where

The coefficient k T is negative. The data of Davidson [ 10 ], Lin
[ 11 ], and James [ 12 ] indicate that the value of k T varies with
temperature and MC Davidson’s data [ 10 ] further indicate that the
value of k T is essentially independent of wood species.

Electric Resistance, Moisture Content, and Temperature

The relationship between the resistance of a wood specimen of
given dimensions and its MC and temperature can be derived from
Eqs 2 and 3:

(4)

which can be rearranged as

(5)

Electric Resistance, Relative Humidity, and Temperature

No data on this relationship are directly available from the
literature. Therefore, we constructed a data set of corresponding
RH, temperature, and DC resistance values over the range of 55%
to 90% RH at 300 and 272 K from the following published data:

1.

2.

3.

MC/RH data over the range of 55 to 90% RH at 300 and 272
K from the Wood Handbook  [ 8 ] provided us with estimates of
RH as a function of MC at two different temperatures.
The relationship between resistance and MC constructed
from James’ data [ 9 ] for hard maple specimens, along with
the data from the Wood Handbook [ 8 ], provided us with
estimates of RH as a function of sensor resistance at 300 K.
Estimates  of  the  temperature  coefficient  k T  constructed  from 
James’ data [ 12 ], along with the previously mentioned data.
enabled us to estimate RH as a function of sensor resistance
at 272 K.

The constructed data are plotted in Fig. 4.
An approximate relationship between RH (Φ). resistance ( R ),

and temperature ( T ) can be obtained by substituting Eq 5 for in ( M )
in Eq 1:
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(6)

where

When Eq 6 is fit to the constructed data in Fig. 4, the following
values for the constants are obtained: a = -280.1, b = -5.87,
c = –0.350. Although the coefficient of determination ( R 2 ) for this
regression is 0.994, Eq 6 is an imperfect model, as the relationship
between RH and the natural log of resistance is not perfectly linear
(Fig. 4). Residuals of the fit of Eq 6 to the constructed data are
shown in Fig. 5. The term residual refers to the difference between
the value predicted by a regression and the measured value at
a corresponding value(s) of the independent variable(s) for the
regression. Thus, a residual is the amount by which the regression
over- or underestimates the actual value at a given set of conditions.
If the residual is positive, the regression equation overestimates
the actual value; if the residual is negative, the regression underesti-
mates the actual value. Figure 5 indicates that this model overesti-
mates RH levels at high and low RH conditions and underestimates
RH levels between 65 and 80% RH. Despite this shortcoming,
errors do not exceed 2% RH over the range of conditions discussed.

Between-Sensor Variability

The data of James [ 9 ] and Davidson [ 10 ] indicate that the values
of kM and kT are not species-dependent. Differences among species
in density, morphology, and chemical composition (factors likely
to influence electrical resistance) generally exceed differences in
these properties within species. Therefore, we anticipate little
between-sensor variation in the coefficients b and c in Eq 6. The
offset value a in Eq 6 may, however, vary between sensors.

Accuracy in Use

Duff [ 1 ] claimed that the sensor registers accurately to within
1% MC. However, experience suggests that this level of accuracy
is not commonly attained. Sherwood [13] claimed an error of ± 2%
MC, but presented no empirical evidence for this estimate of error.
The error stated by Duff [ 1 ] was not based on empirical evidence
but on a screening procedure in which all sensors that do not read
to within 0.5% MC (with a resistance moisture meter for wood)
of the value expected at 90% RH are discarded. The claim of
accuracy to within 1% MC thus appears conservative if based on
such a strenuous screening procedure. This procedure, however,
reportedly results in discarding more than half the sensors tested.
Variation in the values C l or C 2 (in Eqs 2 and 3), variation in
grain direction, and less-than-perfect uniformity during sensor fab-
rication could result in variation in sensor resistance. In contrast
to the wasteful screening procedure proposed by Duff, sensors
may be individually calibrated. Zarr et al. [ 14 ] performed individual
calibrations of sensors for MC level. They found that with individ-
ual sensor calibration, error in estimate of sensor MC could be
small, although they do not state a specific level. One author
has informed us that the level is roughly ± 1% MC (personal
communication). Without individual sensor calibration, Zarr et al.
[ 14 ] indicate that error resulting from sensor variability will be
roughly ± 3% MC. This is in general agreement with Rose [ 15 ],
who estimated a between-sensor variability of approximately
4% MC.

When these sensors are used to estimate local RH rather than MC
of the sensor, additional error in the estimated value is anticipated.
Sources of this additional error are sorption hysteresis and the fact
that the slopes of sorption or resorption isotherms are shallow at
RH levels between 50 and 80%; thus, small errors in estimate of
sensor MC translate into substantial errors in RH value. Table 1
indicates expected error in RH estimates from these sensors
resulting from sorption hysteresis and from small errors in estimat-
ing sensor MC. The values in Table 1 are based on the relationships
(adsorption and desorption) between RH and wood MC for hard
maple published by Hedlin [ 16 ], over the range of 50 to 95% RH.
This range was selected because it is the approximate useable
range of these sensors and roughly corresponds to the RH ranges
we cited previously to calculate values of a, b, and c for Eq 6.
Within this range, RH cart be accurately predicted from MC using
third-degree polynomial equations. Table 1 indicates that sorption
hysteresis will contribute significantly to error in estimated RH.
Error attributable to sorption hysteresis when these sensors are
used in building structures is probably less than Table 1 would
suggest. This is because the data in Table 1 are based on adsorption
measurements made at increasing RH from the ovendry condition
and resorption measurements made at decreasing RH from fiber
saturation. Within building strictures the sensors usually will not
be exposed to such extremes. Sensor MC at a given set of conditions
depends not only on the hysteresis (sorption vs. desorption) but
also on past conditions to which the sensor has been subjected
[ 17, 18 ]. Nevertheless, Table 1 suggests that sorption hysteresis
has the potential to contribute significantly to error when these
sensors are used to estimate RH. In addition, Table 1 indicates
that a 1 % error in estimating sensor MC (the level claimed by
Duff [ 1 ] and verbally related to us by Zarr et al. [ 14 ]) translates
into substantial error in RH estimate, particularly at RH levels
between 50 and 70%.

Unless sensors are individually calibrated, errors well in excess
of 10% RH would be expected solely as a result of error in estimate
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of sensor MC from resistance. Since the research literature suggests
that between-sensor variation is primarily due to difference in the
offset value a in Eq 6 and not in sensitivity (i.e., coefficients b or
c), it may be possible to adequately compensate for between-sensor
variation with a single-reading calibration for each sensor.

Sensor Calibration / Screening

After sensors are fabricated, it is advisable to screen and calibrate
them to identify outlier sensors to be discarded and to identify the
offset value a in Eq 6 for the rest of the sensors. Alternatively,
multipoint calibration over a range of temperature and RH condi-
tions (as done by TenWolde and Mei [ 19 ] on a sample of sensors)
could be performed for each sensor to derive sensor-specific values
for coefficients b and c and the offset value a in Eq 6. In this
study, we performed such multipoint calibrations to determine if
this procedure improves the measurement accuracy.

Objectives and Methodology

A data set consisting of resistance values for 70 wood resistance
sensors with 20 or more readings per sensor taken over a range
of temperature and RH conditions identified the following:

1. Goodness of fit of individual sensor calibration data to Eq 6,
a. Error in predicted RH values.
b. Distribution of error: Randomly distributed error would

indicate non-repeatability of measurements, whereas sys-
tematic distribution of error would indicate a deficiency
in Eq 6 as a model.

2. The nature and magnitude of between-sensor variation.

Methodology

Sensors were fabricated from hard maple (Acer succharum) as
shown in Fig. 1, with the 1.8- by 1.8-mm surface being end-grain.
This specimen configuration was expected to result in slower
sensor response to changing RH than the other configuration shown
in Fig. 1 (in which the unpainted 1.8- by 19-mm surfaces are end-
grain surfaces). Although the alternative configuration would allow
quicker sensor response, we have not identified any published
work in which this alternative configuration was used. Copper
lead wires were bonded to the electrode surfaces with silver-filled
epoxy adhesive.

Calibration data were obtained in two runs: Data for 31 sensors
were obtained on the first run and data for the other 39 sensors
were obtained on the second run. A room with controlled variable
temperature and humidity was used and room conditions were
monitored with a dewpoint hygrometer and mercury thermometer,
in some cases with wet-bulb/dry-bulb thermometers. The series
of temperature/RH conditions during the two runs were not identi-
cal. At any given setpoint, room conditions varied on the order of
± 2% RH and ± 2.7 K over time.

Room conditions were changed rapidly in approximate step
changes. The time period between programming a change in room
conditions and taking resistance readings ranged from 1 h to
approximately 46 h. In general, the change in RH setting divided
by the time between change in RH setting and sensor reading was
less than 10% RH change per hour. This ratio was slightly higher
for two readings, which were taken after increases in RH setting.
The data from these readings suggested that despite the fast increase
in RH conditions, the sensors were approximately at equilibrium
at the time of measurement.

Sensor resistances were measured indirectly via voltage readings
from signal conditioner circuits that were calibrated for electrical
resistance (Fig. 6). Resistance readings were taken within 4 min
of voltage application to the sensors.

Data Analysis

Distribution of Error

Figure 7 shows a representative plot of residuals around Eq 6
as a function of RH. The data in this figure are from a randomly
selected sensor from the first calibration run. The distribution of
residuals with respect to RH level is largely random, suggesting
that the form of Eq 6 is appropriate. The systematic deficiency in
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the model (Eq 6), as shown in Fig. 5 and discussed previously, is
insignificant relative to random error and is, therefore, not apparent
in Fig. 7. The two largest residuals in Fig. 7 suggest that the
distribution of error was not completely random, but the readings
associated with these points were taken after large or reasonably
fast reductions in RH level and were most likely influenced by
sorption hysteresis or failure of the sensors to attain moisture
equilibrium before being read. If these two points are ignored,
the distribution of error with respect to RH level is random and
approximately the same over the entire RH range. This indicates
that Eq 6 is a useful model. Table 1 suggests that error in RH
estimate arising from small errors in measuring sensor MC will
result in greater errors in RH estimate at low RH levels than at
RH levels around 90%. This expectation is not reflected in our
data, which show error to be largely independent of RH.

Figure 8 indicates that distribution of error was significantly
influenced by sorption hysteresis. Equation 6 tended to overesti-
mate RH when sensors had recently been exposed to conditions
of decreasing RH (desorption) and to underestimate RH when
sensors had recently been exposed to conditions of increasing
RH (adsorption).

Figure 9 indicates that distribution of error was also influenced
by the rate of reduction in RH (desorption). The largest residual
shown in Figs. 8 and 9 was associated with a reading taken after
a reduction in RH level of only 10%, but at the fastest nominal
rate change (the change in RH since the previous resistance reading
divided by hours since the last reading) of 3.6% per hour. This
suggests that these sensors respond slowly to reductions in atmo-
spheric humidity. They will overestimate RH even at rates of RH
reduction slower than 10% per hour, the rate cited by TenWolde
and Courville [ 12 ]. In contrast, Fig. 9 suggests that the sensors
were able to respond adequately to rates of increase in RH in
excess of 10% RH per hour.

We then deleted readings taken after desorption and fit the
resulting data sets to Eq 6. This, we believed, would result in
biased estimates of the offset value a, but in accurate estimates
of the coefficient values and substantially tighter error distributions.
As expected, error distributions were substantially tightened. Dis-
tributions of residuals with respect to RH remained random. No
deficiency in the form of Eq 6 was apparent, even when the
masking effect of sorption direction was removed.

Confidence in Calculated Regression Coefficient Values

Because sorption hysteresis influenced sensor resistance, we
used truncated data sets (data sets from which readings taken after
resorption had been deleted) to evaluate the issue of confidence
in calculated coefficient values. As indicated previously, fitting
Eq 6 to such data sets should give biased estimates of the offset
a, but should yield accurate estimates of the coefficients b and c.

Confidence in Calculated Temperature Coefficient – In fitting
adsorption-only data sets to Eq 6, we obtained values for the
temperature coefficient c substantially different from the value
–0.35 calculated from data in the research literature. Furthermore,
the two calibration runs yielded different temperature coefficient
values, significant at α < 0.001. The two calibration runs consisted
of exposure to a similar range of conditions, but in a different
order. Thus it appeared that the order of conditions somehow
influenced the calculated temperature coefficient. As will be dis-
cussed later, we feel that this was due to sensor “memory.” Regard-
less of the explanation, the discrepancies between values from
different calibration runs and between those from our calibration
runs and the value calculated from the research literature suggest
that it is difflcult to obtain accurate temperature coefficient values
for Eq 6 by multipoint calibration. This is in agreement with
TenWolde and Mei [ 19 ], who could not identify a consistent tem-
perature influence on sensor resistance during multipoint
calibrations.

Figure 10 shows the relationship between natural logarithm of
resistance and RH for one sensor for three consecutive adsorption
cycles at three progressively higher temperatures (288.7, 294.2, and
299.8 K). It shows that resistance tends to decrease as temperature
increases, in agreement with James [ 12 ]. However, using the data
shown in Fig. 10, the calculated temperature coefficient c in Eq
6 is -0.893—substantially in excess of the value previously calcu-
lated from data in the research literature. Part of the reason for
this excessively large calculated temperature coefficient value is
that resistance values during the first part of the first adsorption
cycle (288.7 K) were substantially higher at equivalent RH levels
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than were those on the subsequent cycles (294.2 and 299.8 K).
The first sorption cycle occurred after the sensors had been stored
under dry conditions for years. Thus, Fig. 10 suggests that sensor
resistance is influenced not only by hysteresis (sorption vs. desorp-
tion) and rate, but also by history of exposure prior to the most
recent change in environmental conditions. According to Skaar
[ 17 ] and Suchsland [ 18 ], equilibrium MC of wood and wood
products is influenced by past history as well as by hysteresis. We
supposed that sensor memory influenced MC  to such a degree that
it obscured the influence of temperature on resistance, making
determination of an accurate temperature coefficient for Eq 6
impossible.

Confidence in Calculated Resistance Coefficient  Value — Figure
10 also indicates that sensor memory and the range of conditions
over which the sensors are conditioned during calibration can affect
the calculated values of the coefficient b in Eq 6. The slope of
the trace of the first adsorption cycle in Fig. 10 is influenced by
the high resistance values recorded at the start of that cycle. When
the data from the three cycles are individually fit to Eq 6 (with
no temperature correction factor, as each cycle was isothermal),
the values of coefficient b obtained for the first, second, and third
cycles are -4.74, –7.31, and -6.09, respectively. The disparity
between these values shows that obtaining a value for the coeffi-
cient b from any single cycle is risky. However, the average of
the three coefficient values (-6.05) is close to that obtained from
the data set we constructed from the research literature (–5.87).

Between-Sensor Variation

We based our estimate of between-sensor variation on data
obtained during the third sorption cycle in the second calibration
run. These data were composed of five resistance readings for
each sensor taken at approximately 300 K at successively higher
RH levels. For each sensor, a linear regression of RH as a function
of the natural logarithm of resistance was fit to the five data points.
The two distributions of intercept and slope values for the different
sensors are both approximately normal. Figure 11 shows data for
sensors at the extremes of the distributions (with the exception of
one outlier), plus data for a sensor approximately in the middle
of the distributions. Although there is some between-sensor varia-
tion in resistance change with RH change, (b in Eq 6), between-
sensor variation is primarily due to difference in offset value (a
in Eq 6). The offset value can be easily determined with a single-
point calibration procedure. Figures 7,8, and 10, however, indicate
that the single-point reading should not be taken after large changes
in RH, fast changes in RH. or after conditioning from an unusual

set of conditions. Between-sensor variation for this batch of sensors
is as much as 15% RH, and roughly equivalent to the 4% MC
“interchangeability error” stated by Rose [ 15 ]. This error can be
reduced with single-point calibration to determine the offset value
a for individual sensors.

Although between-sensor variation is primarily an issue of dif-
ference in offset value a in Eq 6, we found that a few sensors
showed unusual values for the coefficient b in Eq 6. Therefore,
we believe a two-point screening procedure is warranted to identify
such outlier sensors.

Error in Readings From Individual Sensors

As indicated previously, sensor resistance at any set of tempera-
ture and RH conditions is influenced by sorption hysteresis and
sensor memory. This has importance both for sensors in use and
(as also suggested previously) for determination of the offset value
a during calibration. The reading made for determination of the
offset value will always be biased by hysteresis to some extent,
because that reading will be made after either adsorption or desorp-
tion. To limit the extent of bias, the single-point calibration reading
should not be made after large or rapid changes in RH or after
reconditioning from extremes in RH. Figure 9 suggests that if
these precautions are taken, errors in RH estimate can be limited
to ± 10% RH (except for after drops in RH exceeding 3% RH per
hour). This is roughly the same magnitude of error that we observed
for between-sensor variation.

Conclusions

1. The error associated with these sensors when used to estimate
relative humidity (RH) does not exceed ± 10% RH, except when
RH decreases at rates in excess of 3% RH per hour. Our data
suggest that this error is associated with sorption hysteresis and
sensor memory.

2. Equation 6 is a sufficiently accurate model. Errors that are
random with regard to RH level obscure any deficiency in the
model caused by the fact that the relationship between RH and
wood moisture content is not perfectly exponential.

3. Variation between sensors is of similar magnitude to the error
for individual sensors. Between-sensor variation can be reduced
with a single-point calibration procedure.

4. Between-sensor variation is primarily an issue of difference
in resistance level (the offset value a in Eq 6), rather than differ-
ences in resistance change in response to change in RH or tempera-
ture (b or c coefficients in Eq 6).

5. Accurately identifying values of resistance and temperature
coeftlcients (b and c coefficients in Eq 6) for individual sensors
by multipoint calibration is difficult. This is particularly true for
the temperature coefficient.

Recommendations

1. We do not recommend performing full multipoint individual
sensor calibrations to obtain coefficient values for Eq 6. Sorption
hysteresis and sensor memory obscure the influence of temperature
on sensor resistance, making accurate determination of the temper-
ature coefficient essentially impossible. The value of coefficient
b as determined by the calibration procedure will depend on how
the sensors are cycled before and during the calibration procedure.
We recommend using -5.87 and –0.35 as values for coefficients
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b and c, respectively, in Eq 6. These values are derived from
previously published data.

2. We recommend a two-point screening procedure consisting
of resistance readings taken at different relative humidity (RH)
levels at one temperature to identify sensors with unusual
resistance/RH sensitivities (for discard) and to identify offset value
a for Eq 6 (for sensors that will be used). The offset value a will
be determined from one of the two data points (using the values
-5.87 and -0.35 for coefficients b and c, respectively). To avoid
serious bias, this data point should not be taken after large increases
or decreases in RH. Cycling the sensor between 65 and 80% RH
twice during the course of a week and then making the resistance
reading after sorption from 65% RH to equilibrium at 70% RH
should avoid serious bias in determination of the offset value a.
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