MICROCHIP

ANBS7

Brushless DC Motor Control Made Easy

Author: Ward Brown
Microchip Technology Inc.

INTRODUCTION

This application note discusses the steps of developing
several controllers for brushless motors. We cover sen-
sored, sensorless, open-loop, and closed-loop design.
There is even a controller with independent voltage and
speed controls so you can discover your motor’s char-
acteristics empirically.

The code in this application note was developed with
the Microchip PIC16F877 PIC® microcontroller, in con-
jucntion with the In-Circuit Debugger (ICD). This com-
bination was chosen because the ICD is inexpensive,
and code can be debugged in the prototype hardware
without need for an extra programmer or emulator. As
the design develops, we program the target device and
exercise the code directly from the MPLAB® environ-

FIGURE 1:

ment. The final code can then be ported to one of the
smaller, less expensive, PIC microcontrollers. The
porting takes minimal effort because the instruction set
is identical for all PIC 14-bit core devices.

It should also be noted that the code was bench tested
and optimized for a Pittman N2311A011 brushless DC
motor. Other motors were also tested to assure that the
code was generally useful.

Anatomy of a BLDC

Figure 1 is a simplified illustration of BLDC motor con-
struction. A brushless motor is constructed with a per-
manent magnet rotor and wire wound stator poles.
Electrical energy is converted to mechanical energy by
the magnetic attractive forces between the permanent
magnet rotor and a rotating magnetic field induced in
the wound stator poles.

SIMPLIFIED BLDC MOTOR DIAGRAMS

© 2002-2011 Microchip Technology Inc.

DS00857B-page 1

ANB857

In this example there are three electromagnetic circuits
connected at a common point. Each electromagnetic
circuit is split in the center, thereby permitting the per-
manent magnet rotor to move in the middle of the
induced magnetic field. Most BLDC motors have a
three-phase winding topology with star connection. A
motor with this topology is driven by energizing two
phases at a time. The static alignment shown in
Figure 2, is that which would be realized by creating an
electric current flow from terminal A to B, noted as path
1 on the schematic in Figure 1. The rotor can be made
to rotate clockwise 60 degrees from the A to B align-
ment by changing the current path to flow from terminal
C to B, noted as path 2 on the schematic. The sug-
gested magnetic alignment is used only for illustration
purposes because it is easy to visualize. In practice,
maximum torque is obtained when the permanent mag-
net rotor is 90 degrees away from alignment with the
stator magnetic field.

The key to BLDC commutation is to sense the rotor
position, then energize the phases that will produce the
most amount of torque. The rotor travels 60 electrical
degrees per commutation step. The appropriate stator
current path is activated when the rotor is 120 degrees
from alignment with the corresponding stator magnetic
field, and then deactivated when the rotor is 60 degrees
from alignment, at which time the next circuit is acti-
vated and the process repeats. Commutation for the
rotor position, shown in Figure 1, would be at the com-
pletion of current path 2 and the beginning of current
path 3 for clockwise rotation. Commutating the electri-

cal connections through the six possible combinations,
numbered 1 through 6, at precisely the right moments
will pull the rotor through one electrical revolution.

In the simplified motor of Figure 1, one electrical revo-
lution is the same as one mechanical revolution. In
actual practice, BLDC motors have more than one of
the electrical circuits shown, wired in parallel to each
other, and a corresponding multi-pole permanent mag-
netic rotor. For two circuits there are two electrical rev-
olutions per mechanical revolution, so for a two-circuit
motor, each electrical commutation phase would cover
30 degrees of mechanical rotation.

Sensored Commutation

The easiest way to know the correct moment to com-
mutate the winding currents is by means of a position
sensor. Many BLDC motor manufacturers supply
motors with a three-element Hall effect position sensor.
Each sensor element outputs a digital high level for 180
electrical degrees of electrical rotation, and a low level
for the other 180 electrical degrees. The three sensors
are offset from each other by 60 electrical degrees so
that each sensor output is in alignment with one of the
electromagnetic circuits. A timing diagram showing the
relationship between the sensor outputs and the
required motor drive voltages is shown in Figure 2.

FIGURE 2: SENSOR VERSUS DRIVE TIMING
1 1 I 1 I 1 I
1| 6 | 5| | 3 | 2 | 1 |6...

+V——*——|——-‘———|-— : _— -
AFIoat—___I__ __I__ __I_____

v [[[[I
W~ oo T _ 1 _ - _C_-_-_"

[I [I
B Float - — — — - == - - == = - -
Voo e— —) — |- — - — ! _ — — -
V==t == == = | N
C Floal - — c—m—t —] — — — 1 _ _ _
-V———— I ——I———I——I——_——

[[[I [I
H - — —_ — — — - -

f f = -+ f
SensorAL__I__J___l__ | | L
H-—— — + — i f - === - - -
semsorB 4 1 L _ A
censorc T T - : : ———-
ensor Lo I | R R I

[[I [I [I

Code 1012 , 0O1 , O11 ;, 010 ; 110 ; 100 ; 101 ;| o001

DS00857B-page 2

© 2002-2011 Microchip Technology Inc.

ANB857

The numbers at the top of Figure 2 correspond to the
current phases shown in Figure 1. It is apparent from
Figure 2 that the three sensor outputs overlap in such
a way as to create six unique three-bit codes corre-
sponding to each of the drive phases. The numbers
shown around the peripheral of the motor diagram in
Figure 1 represent the sensor position code. The north
pole of the rotor points to the code that is output at that
rotor position. The numbers are the sensor logic levels
where the Most Significant bit is sensor C and the Least
Significant bit is sensor A.

Each drive phase consists of one motor terminal driven
high, one motor terminal driven low, and one motor ter-
minal left floating. A simplified drive circuit is shown in
Figure 3. Individual drive controls for the high and low
drivers permit high drive, low drive, and floating drive at
each motor terminal. One precaution that must be
taken with this type of driver circuit is that both high side
and low side drivers must never be activated at the
same time. Pull-up and pull-down resistors must be
placed at the driver inputs to ensure that the drivers are
off immediately after a microcontroller Reset, when the
microcontroller outputs are configured as high-imped-
ance inputs.

Another precaution against both drivers being active at
the same time is called dead-time control. When an
output transitions from the high drive state to the low
drive state, the proper amount of time for the high side
driver to turn off must be allowed to elapse before the
low side driver is activated. Drivers take more time to
turn off than to turn on, so extra time must be allowed
to elapse so that both drivers are not conducting at the
same time. Notice in Figure 3 that the high drive period
and low drive period of each output, is separated by a
floating drive phase period. This dead time is inherent
to the three-phase BLDC drive scenario, so special tim-
ing for dead-time control is not necessary. The BLDC

commutation sequence will never switch the high-side
device and the low-side device in a phase, at the same
time.

At this point we are ready to start building the motor
commutation control code. Commutation consists of
linking the input sensor state with the corresponding
drive state. This is best accomplished with a state table
and a table offset pointer. The sensor inputs will form
the table offset pointer, and the list of possible output
drive codes will form the state table. Code development
will be performed with a PIC16F877 in an ICD. PORTC
has arbitrarily been assigned as the motor drive port
and PORTE as the sensor input port. PORTC was
chosen as the driver port because the ICD demo board
also has LED indicators on that port so we can watch
the slow speed commutation drive signals without any
external test equipment.

Each driver requires two pins, one for high drive and
one for low drive, so six pins of PORTC will be used to
control the six motor drive MOSFETS. Each sensor
requires one pin, so three pins of PORTE will be used
to read the current state of the motor’s three-output
sensor. The sensor state will be linked to the drive state
by using the sensor input code as a binary offset to the
drive table index. The sensor states and motor drive
states from Figure 2 are tabulated in Table 1.

FIGURE 3: THREE PHASE BRIDGE

+Vm

A High B High

control control

e—» TOA

A Low B Low

control control
-V

+Vm +Vm

e—» ToB

C High
control

e—» ToC

C Low
control

-Vm -Vm

© 2002-2011 Microchip Technology Inc.

DS00857B-page 3

ANB857

TABLE 1: CW SENSOR AND DRIVE BITS BY PHASE ORDER

Pin RE2 RE1 REO RC5 RC4 RC3 RC2 RC1 RCO
Phase Sensor Sensor Sensor C High C L.ow B High B L.ow A High A L.ow
C B A Drive Drive Drive Drive Drive Drive

1 1 0 1 0 0 0 1 1 0

2 1 0 0 1 0 0 1 0 0

3 1 1 0 1 0 0 0 0 1

4 0 1 0 0 0 1 0 0 1

5 0 1 1 0 1 1 0 0 0

6 0 0 1 0 1 0 0 1 0

Sorting Table 1 by sensor code binary weight results in Table 2. Activating the motor drivers, according to a state table
built from Table 2, will cause the motor of Figure 1 to rotate clockwise.

TABLE 2: CW SENSOR AND DRIVE BITS BY SENSOR ORDER

Pin RE2 RE1 REO RC5 RC4 RC3 RC2 RC1 RCO
Phase Sensor Sensor Sensor C High C L.ow B High B L.ow A High A L.ow
C B A Drive Drive Drive Drive Drive Drive

6 0 0 1 0 1 0 0 1 0

4 0 1 0 0 1 0 0 1

5 0 1 1 0 1 1 0 0 0

2 1 0 0 1 0 0 1 0 0

1 1 0 1 0 0 0 1 1 0

3 1 0 1 0 0 0 0 1

Counter clockwise rotation is accomplished by driving current through the motor coils in the direction opposite of that
for clockwise rotation. Table 3 was constructed by swapping all the high and low drives of Table 2. Activating the motor
coils, according to a state table built from Table 3, will cause the motor to rotate counter clockwise. Phase numbers in
Table 3 are preceded by a slash denoting that the EMF is opposite that of the phases in Table 2.

TABLE 3: CCW SENSOR AND DRIVE BITS
Pin RE2 RE1 REO RC5 RC4 RC3 RC2 RC1 RCO
Phase Sensor Sensor Sensor C High C L.ow B High B L.ow A High A L.ow
C B A Drive Drive Drive Drive Drive Drive
16 0 0 1 1 0 0 0 0 1
14 0 1 0 0 0 0 1 1 0
/5 0 1 1 1 0 0 1 0 0
2 1 0 0 0 1 1 0 0 0
11 1 0 1 0 0 1 0 0 1
13 1 1 0 0 1 0 0 1 0

The code segment for determining the appropriate drive word from the sensor inputs is shown in Figure 4.

DS00857B-page 4 © 2002-2011 Microchip Technology Inc.

ANB857

FIGURE 4. COMMUTATION CODE SEGMENT

#define DrivePort PORTC

#define SensorMask B’00000111"

#define SensorPort PORTE

#define DirectionBit PORTA, 1

Commutate
movlw SensorMask ;retain only the sensor bits
andwf SensorPort ;jget sensor data
xorwf LastSensor, w ;jtest if motion sensed
btfsc STATUS, Z ;zero if no change
return ;jno change - return
xorwf LastSensor, f ;replace last sensor data with current
btfss DirectionBit ;test direction bit
goto FwdCom ;bit is zero - do forward commutation

;reverse commutation

movlw HIGH RevTable jget MS byte to table
movwf PCLATH iprepare for computed GOTO
movlw LOW RevTable jget LS byte of table
goto Comz2

FwdCom ; forward commutation
movlw HIGH FwdTable jget MS byte of table
movwf PCLATH ijprepare for computed GOTO
movlw LOW FwdTable jget LS byte of table

Com2
addwf LastSensor, w ;jadd sensor offset
btfsc STATUS, C ;page change in table?
incf PCLATH, f ;vyes - adjust MS byte
call GetDrive ;get drive word from table
movwf DriveWord ;save as current drive word
return

GetDrive
movwf PCL

FwdTable
retlw B’00000000 ;invalid
retlw B’00010010° iphase 6
retlw B/00001001° jphase 4
retlw B’00011000 ;jphase 5
retlw B’00100100° jphase 2
retlw B’00000110° jphase 1
retlw B’00100001" ;jphase 3
retlw B’00000000 ;invalid

RevTable
retlw B’00000000 ;invalid
retlw B’00100001" ;phase /6
retlw B’00000110’ ;phase /4
retlw B’00100100" ;phase /5
retlw B’00011000 ;phase /2
retlw B’00001001’ ;phase /1
retlw B’00010010 ;phase /3
retlw B’00000000 ;invalid

© 2002-2011 Microchip Technology Inc.

DS00857B-page 5

ANB857

Before we try the commutation code with our motor, lets
consider what happens when a voltage is applied to a
DC motor. A greatly simplified electrical model of a DC
motor is shown in Figure 5.

FIGURE 5: DC MOTOR EQUIVALENT
CIRCUIT
r—— - - - - - - — — T
| R L |
o)
+ | |
— Co_o_ " Motor |

When the rotor is stationary, the only resistance to cur-
rent flow is the impedance of the electromagnetic coils.
The impedance is comprised of the parasitic resistance
of the copper in the windings, and the parasitic induc-
tance of the windings themselves. The resistance and
inductance are very small by design, so start-up cur-
rents would be very large, if not limited.

When the motor is spinning, the permanent magnet
rotor moving past the stator coils induces an electrical
potential in the coils called Back Electromotive Force,
or BEMF. BEMF is directly proportional to the motor
speed and is determined from the motor voltage con-
stant Ky.

EQUATION 1:

RPM =K, x Volts
BEMF = RPM /Ky,

In an ideal motor, R and L are zero, and the motor will
spin at a rate such that the BEMF exactly equals the
applied voltage.

The current that a motor draws is directly proportional
to the torque load on the motor shaft. Motor current is
determined from the motor torque constant Kr.

EQUATION 2:

Torque = K+ X Amps

An interesting fact about K and Ky, is that their product
is the same for all motors. Volts and Amps are
expressed in MKS units, so if we also express Ky in
MKS units, that is N-M/Rad/Sec, then the product of Ky,
and Kt is 1.

EQUATION 3:

KV*KT:]'

This is not surprising when you consider that the units
of the product are [1/(V*A)]*[(N*M)*(Rad/Sec)], which
is the same as mechanical power divided by electrical
power.

If voltage were to be applied to an ideal motor from an
ideal voltage source, it would draw an infinite amount of
current and accelerate instantly to the speed dictated
by the applied voltage and K. Of course no motor is
ideal, and the start-up current will be limited by the par-
asitic resistance and inductance of the motor windings,
as well as the current capacity of the power source.
Two detrimental effects of unlimited start-up current
and voltage are excessive torque and excessive cur-
rent. Excessive torque can cause gears to strip, shaft
couplings to slip, and other undesirable mechanical
problems. Excessive current can cause driver
MOSFETS to blow out and circuitry to burn.

We can minimize the effects of excessive current and
torque by limiting the applied voltage at start-up with
Pulse-Width Modulation (PWM). Pulse-Width Modula-
tion is effective and fairly simple to do. Two things to
consider with PWM are, the MOSFET losses due to
switching, and the effect that the PWM rate has on the
motor. Higher PWM frequencies mean higher switching
losses, but too low of a PWM frequency will mean that
the current to the motor will be a series of high current
pulses instead of the desired average of the voltage
waveform. Averaging is easier to attain at lower fre-
guencies if the parasitic motor inductance is relatively
high, but high inductance is an undesirable motor char-
acteristic. The ideal frequency is dependent on the
characteristics of your motor and power switches. For
this application, the PWM frequency will be approxi-
mately 10 kHz.

DS00857B-page 6

© 2002-2011 Microchip Technology Inc.

ANB857

We are using PWM to control start-up current, so why
not use it as a speed control also? We will use the Ana-
log-to-Digital Converter (ADC), of the PIC16F877 to
read a potentiometer and use the voltage reading as
the relative speed control input. Only 8 bits of the ADC
are used, so our speed control will have 256 levels. We
want the relative speed to correspond to the relative
potentiometer position. Motor speed is directly propor-
tional to applied voltage, so varying the PWM duty
cycle linearly from 0% to 100% will result in a linear
speed control from 0% to 100% of maximum RPM.
Pulse width is determined by continuously adding the
ADC result to the free running TimerO count to deter-
mine when the drivers should be on or off. If the addi-
tion results in an overflow, then the drivers are on,
otherwise they are off. An 8-bit timer is used so that the
ADC to timer additions need no scaling to cover the full
range. To obtain a PWM frequency of 10 kHz Timer0
must be running at 256 times that rate, or 2.56 MHz.
The minimum prescale value for TimerO is 1:2, so we
need an input frequency of 5.12 MHz. The input to
TimerO0 is Fosc/4. This requires an Fosc of 20.48 MHz.
That is an odd frequency, and 20 MHz is close enough,
so we will use 20 MHz resulting in a PWM frequency of
9.77 kHz.

There are several ways to modulate the motor drivers.
We could switch the high and low side drivers together,
or just the high or low driver while leaving the other
driver on. Some high side MOSFET drivers use a
capacitor charge pump to boost the gate drive above
the drain voltage. The charge pump charges when the
driver is off and discharges into the MOSFET gate
when the driver is on. It makes sense then to switch the
high side driver to keep the charge pump refreshed.
Even though this application does not use the charge
pump type drivers, we will modulate the high side driver
while leaving the low side driver on. There are three
high side drivers, any one of which could be active
depending on the position of the rotor. The motor drive
word is 6-bits wide, so if we logically AND the drive
word with zeros in the high driver bit positions, and 1's
in the low driver bit positions, we will turn off the active
high driver regardless which one of the three it is.

We have now identified 4 tasks of the control loop:

* Read the sensor inputs

» Commutate the motor drive connections

* Read the speed control ADC

* PWM the motor drivers using the ADC and TimerO
addition results

At 20 MHz clock rate, control latency, caused by the
loop time, is not significant so we will construct a simple
polled task loop. The control loop flowchart is shown in
Figure 6 and code listings are in Appendix B.

© 2002-2011 Microchip Technology Inc.

DS00857B-page 7

ANB857

FIGURE 6:

SENSORED DRIVE FLOWCHART

Initialize

No

»
v
ADC
Ready
?

No

i
<«

Yes

Read new ADC

Set ADC GO

E

4
Add ADRESH to

TMRO

v

Yes

No

Mask Drive
Word

Output Drive

Word

Sensor

Change

Yes

Save Sensor
Code

v

Commutate

DS00857B-page 8

© 2002-2011 Microchip Technology Inc.

ANB857

Sensorless Motor Control

It is possible to determine when to commutate the
motor drive voltages by sensing the back EMF voltage
on an undriven motor terminal during one of the drive
phases. The obvious cost advantage of sensorless
control is the elimination of the Hall position sensors.
There are several disadvantages to sensorless control:

« The motor must be moving at a minimum rate to
generate sufficient back EMF to be sensed

» Abrupt changes to the motor load can cause the
BEMF drive loop to go out of lock

* The BEMF voltage can be measured only when
the motor speed is within a limited range of the
ideal commutation rate for the applied voltage

« Commutation at rates faster than the ideal rate
will result in a discontinuous motor response

If low cost is a primary concern and low speed motor
operation is not a requirement and the motor load is not
expected to change rapidly then sensorless control
may be the better choice for your application.

Determining the BEMF

The BEMF, relative to the coil common connection
point, generated by each of the motor coils, can be
expressed as shown in Equation 4 through Equation 6.

EQUATION 4:

Bgewr =SiN (o)

EQUATION 65:

EQUATION 6:

[)
Ageve = SIN |0"i;\
\)

FIGURE 7: BEMF EQUIVALENT

CIRCUIT

Figure 7 shows the equivalent circuit of the motor with
coils B and C driven while coil A is undriven and avail-
able for BEMF measurement. At the commutation fre-
quency the L's are negligible. The R’s are assumed to
be equal. The L and R components are not shown in
the A branch since no significant current flows in this
part of the circuit so those components can be ignored.

© 2002-2011 Microchip Technology Inc.

DS00857B-page 9

ANB857

The BEMF generated by the B and C coils in tandem,
as shown in Figure 7, can be expressed as shown in
Equation 7.

EQUATION 7:

BEMFgc = Bgewr - Coewr

The sign reversal of Cggpg is due to moving the refer-
ence point from the common connection to ground.

Recall that there are six drive phases in one electrical
revolution. Each drive phase occurs +/- 30 degrees
around the peak back EMF of the two motor windings
being driven during that phase. At full speed the
applied DC voltage is equivalent to the RMS BEMF
voltage in that 60 degree range. In terms of the peak
BEMF generated by any one winding, the RMS BEMF
voltage across two of the windings can be expressed
as shown in Equation 8.

EQUATION 8:

2

BEMF o= |—) (sin(a)-sin (-—zn\l\ba
LI L 3))

BEMF ¢ = 1.6554

We will use this result to normalize the BEMF diagrams
presented later, but first lets consider the expected
BEMF at the undriven motor terminal.

Since the applied voltage is pulse-width modulated, the
drive alternates between on and off throughout the
phase time. The BEMF, relative to ground, seen at the
A terminal when the drive is on, can be expressed as
shown in Equation 9.

EQUATION 9:
V- (B, -C R
BEMF, = IV - (Bgewe - Coewe)] - Corvr+ Agr
2R
V-B + C
BEMF, = = oeMe - Coenr + Peewr

2

Notice that the winding resistance cancels out, so
resistive voltage drop, due to motor torque load, is not
a factor when measuring BEMF.

The BEMEF, relative to ground, seen at the A terminal
when the drive is off can be expressed as shown in
Equation 10.

EQUATION 10:

BEMFA = Agenr - Coenr

DS00857B-page 10

© 2002-2011 Microchip Technology Inc.

ANB857

Figure 8 is a graphical representation of the BEMF for-
mulas computed over one electrical revolution. To
avoid clutter, only the terminal A waveform, as would
be observed on a oscilloscope is displayed and is
denoted as BEMF(drive on). The terminal A waveform
is flattened at the top and bottom because at those
points the terminal is connected to the drive voltage or
ground. The sinusoidal waveforms are the individual
coil BEMFs relative to the coil common connection
point. The 60 degree sinusoidal humps are the BEMFs
of the driven coil pairs relative to ground. The entire
graph has been normalized to the RMS value of the coil

pair BEMFs.
FIGURE 8: BEMF AT 100% DRIVE
BLDC Motor Waveforms
(PWM at 100% Duty Cycle)
1.5
o 17
>
a —eo—B
&)
a) 4 —a—C
o 0.5]
hat —a—A
I, —x—ABS(B-C)
E o % ABS(C-A)
‘g —e—ABS(A-B)
e == BEMF(drive on)
S 05 -
-1 ‘ ‘ ‘
-30 30 90 150 210 270 330
Electrical Degrees

Notice that the BEMF(drive on) waveform is fairly linear
and passes through a voltage that is exactly half of the
applied voltage at precisely 60 degrees which coin-
cides with the zero crossing of the coil A BEMF wave-
form. This implies that we can determine the rotor
electrical position by detecting when the open terminal
voltage equals half the applied voltage.

What happens when the PWM duty cycle is less than
100%? Figure 9 is a graphical representation of the
BEMF formulas computed over one electrical revolu-
tion when the effective applied voltage is 50% of that
shown in Figure 8. The entire graph has been normal-
ized to the peak applied voltage.

© 2002-2011 Microchip Technology Inc. DS00857B-page 11

ANB857

BEMF AT 50% DRIVE

FIGURE 9:

BLDC Motor Waveforms
(PWM at 50% Duty Cycle)

—%— ABS(B-C)
—x%—ABS(C-A)
—e— ABS(A-B)

——B
—=—C
—a—A

== BEMF(drive on)

\\\\\\\\\\\\\\\\ A R I

| ______dA o __

\\\\\\\\\\\\\\ R, I
o)

I IR N AR o __
\\\\\\\\\\\\\\\\\\\\\\\ e
T < T

— o o

(2A11Q D@ 01 PazifewoN) S1||0A

330

270

90

30

Electrical Degrees

As expected, the BEMF waveforms are all reduced pro-

nal still equals half the applied voltage midway through

portionally but notice that the BEMF on the open termi-
the 60 degree drive phase. This occurs only when the

drive voltage is on. Figure 10 shows a detail of the open
terminal BEMF when the drive voltage is on and when

the drive voltage is off. At various duty cycles, notice
that the drive on curve always equals half the applied

voltage at 60 degrees.

© 2002-2011 Microchip Technology Inc.

DS00857B-page 12

ANB857

FIGURE 10: DRIVE ON VS. DRIVE OFF BEMF
Floating Terminal Back EMF Floating Terminal Back EMF
(PWM at 100% Duty Cycle) (PWM at 60% Duty Cycle)
1 1
1 1 1 e L
E ‘ 1 1 1 g i
a | | | 5
| | | |
8 | | | | 8
9 | | | | 8
ks 05 | ‘ | | —5— BEMF(drive on) B o BEMF(drive on)
g . : ! : : —a— BEMF(drive off) E —a— BEMR(drive off)
= -~~~ [N T T =
A 3
§ [--ob--eeee- e 5
S b N g
0 | | | |
30 0
Electrical Degrees Electrical Degrees
Floating Terminal Back EMF Floating Terminal Back EMF
(PWMat 75% Duty Cycle) (PWMat 10% Duty Cycle)
1 1
T T T T ; ; ;
fa o | | |
2 2 I I I
8 5 1 1 1
8 8 | | |
o o | | |
= e | | |
Ej 05 —&— BEMF(drive on) § 05 s 1 —5— BEMF(drive on)
E ' —a— BEMF(drive off) ré) | | T T —8——4 | BEMFdie o
5 B l
£ £ [
(3] 9] |
g 2 I
S S 1
0
30 0
Blectrical Degrees Hectrical Degrees

How well do the predictions match an actual motor?
Figure 11 is shows the waveforms present on terminal
A of a Pittman N2311A011 brushless motor at various
PWM duty cycle configurations. The large transients,
especially prevalent in the 100% duty cycle waveform,
are due to flyback currents caused by the motor wind-
ing inductance.

© 2002-2011 Microchip Technology Inc.

DS00857B-page 13

ANB857

FIGURE 11: PITTMAN BEMF WAVEFORMS

100% Duty Cycle

i
|

—-—
- L
-—— &
-—

-

It

75% Duty Cycle

IZeES

e
—
e -

—)
e e T

50% Duty Cycle

1 il

10% Duty Cycle

The rotor position can be determined by measuring the
voltage on the open terminal when the drive voltage is
applied and then comparing the result to one half of the
applied voltage.

Recall that motor speed is proportional to the applied
voltage. The formulas and graphs presented so far rep-
resent motor operation when commutation rate coin-
cides with the effective applied voltage. When the
commutation rate is too fast then commutation occurs
early and the zero crossing point occurs later in the
drive phase. When the commutation rate is too slow
then commutation occurs late and the zero crossing
point occurs earlier in the drive phase. We can sense
and use this shift in zero crossing to adjust the commu-
tation rate to keep the motor running at the ideal speed
for the applied voltage and load torque.

DS00857B-page 14

© 2002-2011 Microchip Technology Inc.

ANB857

Open-Loop Speed Control

An interesting property of brushless DC motors is that
they will operate synchronously to a certain extent. This
means that for a given load, applied voltage, and com-
mutation rate the motor will maintain open-loop lock
with the commutation rate provided that these three
variables do not deviate from the ideal by a significant
amount. The ideal is determined by the motor voltage
and torque constants. How does this work? Consider
that when the commutation rate is too slow for an
applied voltage, the BEMF will be too low resulting in
more motor current. The motor will react by accelerat-
ing to the next phase position then slow down waiting
for the next commutation. In the extreme case the
motor will snap to each position like a stepper motor
until the next commutation occurs. Since the motor is
able to accelerate faster than the commutation rate,
rates much slower than the ideal can be tolerated with-
out losing lock but at the expense of excessive current.

Now consider what happens when commutation is too
fast. When commutation occurs early the BEMF has
not reached peak resulting in more motor current and a
greater rate of acceleration to the next phase but it will
arrive there too late. The motor tries to keep up with the
commutation but at the expense of excessive current.
If the commutation arrives so early that the motor can
not accelerate fast enough to catch the next commuta-
tion, lock is lost and the motor spins down. This hap-
pens abruptly not very far from the ideal rate. The
abrupt loss of lock looks like a discontinuity in the motor
response which makes closed-loop control difficult. An
alternative to closed-loop control is to adjust the com-
mutation rate until self locking open-loop control is
achieved. This is the method we will use in our applica-
tion.

When the load on a motor is constant over its operating
range then the response curve of motor speed relative
to applied voltage is linear. If the supply voltage is well
regulated, in addition to a constant torque load, then
the motor can be operated open loop over its entire
speed range. Consider that with Pulse-Width Modula-
tion the effective voltage is linearly proportional to the
PWM duty cycle. An open-loop controller can be made
by linking the PWM duty cycle to a table of motor speed
values stored as the time of commutation for each drive
phase. We need a table because revolutions per unit
time is linear, but we need time per revolution which is
not linear. Looking up the time values in a table is much
faster than computing them repeatedly.

The program that we use to run the motor open loop is
the same program we will use to automatically adjust
the commutation rate in response to variations in the
torque load. The program uses two potentiometers as
speed control inputs. One potentiometer, we'll call it the
PWM potentiometer, is directly linked to both the PWM
duty cycle and the commutation time look-up table. The
second potentiometer, we'll call this the Offset potenti-
ometer, is used to provide an offset to the PWM duty
cycle determined by the PWM potentiometer. An Ana-
log-to-Digital conversion of the PWM potentiometer
produces a number between 0 and 255. The PWM duty
cycle is generated by adding the PWM potentiometer
reading to a free running 8-bit timer. When the addition
results in a carry the drive state is on, otherwise it is off.
The PWM potentiometer reading is also used to access
the 256 location commutation time look-up table. The
Offset potentiometer also produces a number between
0 and 255. The Most Significant bit of this number is
inverted making it a signed number between -128 and
127. This offset result, when added to the PWM poten-
tiometer, becomes the PWM duty cycle threshold, and
controls the drive on and off states described previ-
ously.

Closed-Loop Speed Control

Closed-loop speed control is achieved by unlinking the
commutation time table index from the PWM duty cycle
number. The PWM potentiometer is added to a fixed
manual threshold number between 0 and 255. When
this addition results in a carry, the mode is switched to
automatic. On entering Automatic mode the commuta-
tion index is initially set to the PWM potentiometer
reading. Thereafter, as long as Automatic mode is still
in effect, the commutation table index is automatically
adjusted up or down according to voltages read at
motor terminal A at specific times. Three voltage read-
ings are taken.

FIGURE 12: BEMF SAMPLE TIMES

_JLULULL'.'.'.'L.'TW#:-'..JJJJJ.'JJ.'..'mJ:.'J.'.'JJ J.‘.‘JJW-’[’TFWMUL‘JL

© 2002-2011 Microchip Technology Inc.

DS00857B-page 15

ANB857

The first reading is taken during drive phase 4 when ter-
minal A is actively driven high. This is the applied volt-
age. The next two readings are taken during drive
phase 5 when terminal A is floating. The first reading is
taken when % of the commutation time has elapsed
and the second reading is taken when % of the commu-
tation time has elapsed. We'll call these readings 1 and
2, respectively. The commutation table index is
adjusted according to the following relationship
between the applied voltage reading and readings 1
and 2:

 Index is unchanged if Reading 1 > Applied Volt-
age/2 and Reading 2 < Applied Voltage/2

» Index is increased if Reading 1 < Applied Voltage/
2

* Index is decreased if Reading 1 > Applied Volt-
age/2 and Reading 2 > Applied Voltage/2

The motor rotor and everything it is connected to has a
certain amount of inertia. The inertia delays the motor
response to changes in voltage load and commutation
time. Updates to the commutation time table index are
delayed to compensate for the mechanical delay and
allow the motor to catch up.

Acceleration and Deceleration Delay

The inertia of the motor and what it is driving, tends to
delay motor response to changes in the drive voltage.
We need to compensate for this delay by adding a
matching delay to the control loop. The control loop
delay requires two time constants, a relatively slow one
for acceleration, and a relatively fast one for decelera-
tion.

Consider what happens in the control loop when the
voltage to the motor suddenly rises, or the motor load
is suddenly reduced. The control senses that the motor
rotation is too slow and attempts to adjust by making
the commutation time shorter. Without delay in the con-
trol loop, the next speed measurement will be taken

before the motor has reacted to the adjustment, and
another speed adjustment will be made. Adjustments
continue to be made ahead of the motor response until
eventually, the commutation time is too short for the
applied voltage, and the motor goes out of lock. The
acceleration timer delay prevents this runaway condi-
tion. Since the motor can tolerate commutation times
that are too long, but not commutation times that are
too short, the acceleration time delay can be longer
than required without serious detrimental effect.

Consider what happens in the control loop when the
voltage to the motor suddenly falls, or the motor load is
suddenly increased. If the change is sufficiently large,
commutation time will immediately be running too short
for the motor conditions. The motor cannot tolerate this,
and loss of lock will occur. To prevent loss of lock, the
loop deceleration timer delay must be short enough for
the control loop to track, or precede the changing motor
condition. If the time delay is too short, then the control
loop will continue to lengthen the commutation time
ahead of the motor response resulting in over compen-
sation. The motor will eventually slow to a speed that
will indicate to the BEMF sensor that the speed is too
slow for the applied voltage. At that point, commutation
deceleration will cease, and the commutation change
will adjust in the opposite direction governed by the
acceleration time delay. Over compensation during
deceleration will not result in loss of lock, but will cause
increased levels of torque ripple and motor current until
the ideal commutation time is eventually reached.

Determining The Commutation Time
Table Values

The assembler supplied with MPLAB performs all cal-
culations as 32-bit integers. To avoid the rounding
errors that would be caused by integer math, we will
use a spreadsheet, such as Excel, to compute the table
entries then cut and paste the results to an include file.
The spreadsheet is setup as shown in Table 4.

TABLE 4: COMMUTATION TIME TABLE VALUES
Variable Name Number or Formula Description
Phases 12 Number of commutation phase changes in one
mechanical revolution.
Fosc 20 MHz Microcontroller clock frequency
Fosc 4 Fosc/4 Microcontroller timers source clock
Prescale 4 Timer 1 prescale
MaxRPM 8000 Maximum expected speed of the motor at full
applied voltage
MinRPM (60*Fosc_4)/Phases*Prescale*65535)+1 | Limitation of 16-bit timer
Offset -345 This is the zero voltage intercept on the RPM axis.
A property normalized to the 8-bit A to D converter.
Slope (MaxRPM-Offset)/255 Slope of the RPM to voltage input response curve
normalized to the 8-bit A to D converter.

DS00857B-page 16

© 2002-2011 Microchip Technology Inc.

ANB857

The body of the spreadsheet starts arbitrarily at row 13.
Row 12 contains the column headings. The body of the
spreadsheet is constructed as follows:

e Column A is the commutation table index number
N. The numbers in column A are integers from 0
to 255.

* Column B is the RPM that will result by using the
counter values at index number N. The formula in
column B is: =IF(Offset+A13*Slope>MinRPM, Off-
set+A13*Slope,MinRPM).

» Column C is the duration of each commutation
phase expressed in seconds. The formula for col-
umn C is: =60/(Phases*B13).

e Column D is the duration of each commutation
phase expressed in timer counts. The formula for
column D is: =C13*Fosc_4/Prescale.

The range of commutation phase times at a reasonable
resolution requires a 16-bit timer. The timer counts from
0 to a compare value then automatically resets to 0.
The compare values are stored in the commutation
time table. Since the comparison is 16 bits and tables
can only handle 8 bits, the commutation times will be
stored in two tables accessed by the same index.

e Column E is the Most Significant Byte of the 16-bit
timer compare value. The formula for column E is:
=CONCATENATE(“retlw high D™,INT(D13),”™).

e Column F is the Least Significant Byte of the 16-
bit timer compare value. The formula for column F
is: =CONCATENATE((“retlw low D™,INT(D13),™”).

When all spreadsheet formulas have been entered in
row 13, the formulas can be dragged down to row 268
to expand the table to the required 256 entries. Col-
umns E and F will have the table entries in assembler
ready format. An example of the table spreadsheet is

shown in Figure 13.

FIGURE 13: PWM LOOK-UP TABLE GENERATOR
REE
A B C D E F | g
1 |Phases/Rev 12
2 |Fosc 2 00EHI?
3 |Fosc/d 5.00EHIE
4 |Prescale 4
5 |MaxRPM 8000
E |MinRPM 95
7_|Offset -345.00 l
g [Slope 3273
g9
10
11
12 /N RPM Sec per Transition Timer Counts MS Byte Code LS Byte Code
13 0 95 5.19E-02 64855 rethw high DB4354" rethw low DB4854"
14 1 95 5.19E-02 64855 rethw high DB4354" rethw low DB4854"
15 2 95 5.19E-02 64855 rethw high DB4354" rethw low DB4854"
16 3 95 5. 19E-02 B4855 rethw high DB4854" rethw low DB4854"
17 4 95 5. 19E-02 B4855 rethw high DB4854" rethw low DB4854"
18 5 95 5. 19E-02 B4855 rethw high DB4854" rethw low DB4854"
19 B 95 5. 19E-02 64855 rethw high DBA354" rethw low DB4854"
20 7 98 5.19E-02 64855 rethw high DB4854" retlw [ow DB4E54"
21 g 98 5.19E-02 64855 rethw high DB4854" retlw [ow DB4E54"
2 9 98 5.19E-02 64855 rethw high DB4854" retlw [ow DB4E54"
23 10 95 5.19E-02 B4855 retlw high DB4854" retlw low DB4354"
24 11 95 5.19E-02 B4855 retlw high DB4854" retlw low DB4354"
25 12 95 5.19E-02 B4855 retlw high DB4854" retlw low DB4354"
2B 13 95 5.19E-02 B4855 retlw high DB4854" retlw low DB4854"
x 14 113 4 42E-02 55233 rethw high 095233 retlw low DB5233"
24 18 146 3.43E-02 42843 rethw high 042842 retlw low D'42542"
|44 ¢ M| Lookup Table { Open Locp | 4]

© 2002-2011 Microchip Technology Inc.

DS00857B-page 17

ANB857

Using Open-Loop Control to Determine
Motor Characteristics

You can measure the motor characteristics by operat-
ing the motor in Open-Loop mode, and measuring the
motor current at several applied voltages. You can then
chart the response curve in a spreadsheet, such as
Excel, to determine the slope and offset numbers.
Finally, plug the maximum RPM and offset numbers
back into the table generator spreadsheet to regener-
ate the RPM tables.

To operate the motor in Open-Loop mode:

» Set the manual threshold number (ManThr esh)
to OxFF. This will prevent the Auto mode from tak-
ing over.

* When operating the motor in Open-Loop mode,
start by adjusting the offset control until the motor
starts to move. You may also need to adjust the
PWM control slightly above minimum.

« After the motor starts, you can increase the PWM
control to increase the motor speed. The RPM
and voltage will track, but you will need to adjust
the offset frequently to optimize the voltage for the
selected RPM.

« Optimize the voltage by adjusting the offset for
minimum current.

To obtain the response offset with Excel®, enter the
voltage (left column), and RPM (right column) pairs in
adjacent columns of the spreadsheet. Use the chart
wizard to make an X-Y scatter chart. When the chart is
finished, right click on the response curve and select
the pop-up menu “add trendline. . .” option. Choose the
linear regression type and, in the Options tab, check
the “display equation on chart” option. An example of
the spreadsheet is shown in Figure 14.

FIGURE 14: MOTOR RESPONSE SCOPE DETERMINATION

~ini
A |8 | ¢ [b E | F | &6 0 Tk L wm [N | o | P

| 1 [tRev RPM tPWHM %PWM VAvg Condition =

(2| 60 1000 72 GO6% 062 Star ¥

= 15 1429% 1.71/Star 300000

n AT 15 1429% 17

5 | 52 115385 N 1808% 229 y

6| 79 1m3N N8 M07E% 249 s

BN T

8| 61 BT MA £25% 512 7000.00 7

(0| 125 480000 SRE S400% 649 /

0] 1154 515464 B8 BA7E% 177 BO00.00

11| 1068 SE1798 724 6BO5% 87 '

12| 9m mET77 28 TAGE% 946 500000 A

13| 75 BoO000 105 100.00% 1200 = //f

14 e

i 400000 .

e 300000

17 :

i yd

13 200000

Eil

21 100000

22 /

% 0.00

B 000 200 400 GO0 BOD 1000 1200 14.00

26| §=719.8x - 304 74 Volts

v M

%

[4] 4 » [}, Lookup Table ' 0pen Loop | 4]

DS00857B-page 18

© 2002-2011 Microchip Technology Inc.

ANB857

Constructing The Sensorless Control
Code

At this point we have all the pieces required to control
a sensorless motor. We can measure BEMF and the
applied voltage then compare them to each other to
determine rotor position. We can vary the effective
applied voltage with PWM and control the speed of the
motor by timing the commutation phases. Some mea-
surement events must be precisely timed. Other mea-
surement events need not to interfere with each other.
The ADC must be switched from one source to another
and allow for sufficient acquisition time. Some events
must happen rapidly with minimum latency. These
include PWM and commutation.

We can accomplish everything with a short main loop
that calls a state table. The main loop will handle PWM
and commutation and the state table will schedule
reading the two potentiometers, the peak applied volt-
age and the BEMF voltages at two times when the
attached motor terminal is floating. Figure A-1 through
Figure A-10, in Appendix A: “Sensorless Control
Flowchart”, is the resulting flow chart of sensorless
motor control. Code listings are in Appendix C: “Sen-
sored Code” and Appendix D: “Sensorless Code”.

© 2002-2011 Microchip Technology Inc.

DS00857B-page 19

ANB857

APPENDIX A: SENSORLESS CONTROL FLOWCHART

(Sensorless Control)

v

FIGURE A-1: MAIN LOOP

Initialize
v
Yes Is Timerl
<\Compare Flag
Set?
A 4
Call Commutate

No

v

A 4

Yes Is Full On
Flag Set?
Add PWM
Threshold to
Timer0
Yes No
A\ 4 v
Set Drive-On Clear Drive-On
Flag Flag

v
A

v

Call DriveMotor

Call LockTest
Call StateMachine

DS00857B-page 20 © 2002-2011 Microchip Technology Inc.

ANB857

FIGURE A-2: MOTOR COMMUTATION

Is Timerl
Clear on Compare
Enabled?

iNo

Decrement
Phaselndex

|

Is
Phaselndex
=07

Yes

v

Phaselndex = 6 No

»
»

A4

Yes

Drive Word =
Table Entry@Phaselndex

A

y
DriveMotor
A

A

Commutate End

© 2002-2011 Microchip Technology Inc.

DS00857B-page 21

ANB857

FIGURE A-3: MOTOR DRIVER CONTROL

Get Stored
DriveWord

.4

No Is
DriveOnFlag

Set?
v
AND DriveWord

with OffMask Yes

»
L

A4
OR DriveWord
with SpeedStatus

) 4
Output DriveWord
to motor drive port

v

(DriveMotor End)
(SetTimer)

A 4
High byte of Timerl compare=
High byte Table@RPMIndex

FIGURE A-4: PHASE DRIVE PERIOD

N

Low byte of Timerl compare=
Low byte Table@RPMIndex

v

(SetTimer End)

DS00857B-page 22 © 2002-2011 Microchip Technology Inc.

ANB857

FIGURE A-5: MOTOR SPEED LOCKED WITH COMMUTATION RATE

No Is PWM

No Is Drive
Active?

<«

On Cycle

cycle start
flag set?

Which half
of PWM cycle
is longest?

Yes Off Cycle

Clear PWM
cycle start flag

v
Decrement
RampTimer

!

Is
RampTimer

No

A

Zero?

v

Reset AutoRPM

Set AutoRPM
Flag Flag

LT3

© 2002-2011 Microchip Technology Inc.

DS00857B-page 23

ANB857

FIGURE A-6: MOTOR SPEED LOCKED WITH COMMUTATION RATE (CONT.)

LT3

Is
BEMF1 <

VSupply/2
?

BEMF2 < Yes

VSupply/2
?
No
v
SpeedStatus = SpeedStatus =
Speed Too Slow Speed Too Fast
4 4
RampTimer =

RampTimer =
AccelerateDelay Decel er at eDel ay

} !

No
AutoRPM? > < AutoRPM?
Yes Yes
Decrement RPMIndex
Increment RPMIndex Limit to minimum
Limit to maximum
v
v SpeedStatus =
RPMIndex = ADCRPM Speed Locked
v
RampTimer =
DecelerateDelay
A > |« A
v

(LockTestEnd)

DS00857B-page 24 © 2002-2011 Microchip Technology Inc.

ANB857

FIGURE A-7: MOTOR CONTROL STATE MACHINE
State =
Y
€8 RPMSetup
?
No
State = Yes
RPMSetup
?
Start ADC No
v
Change ADC
input to Offset Pot
v ADCRPM = ADC
State = RPMRead Rej”“
N b 4 State = OffsetSetup
State =
ﬁYes OffsetSetup o
? Ll
No
Y
State = Yes
OffsetRead
?
Start ADC
No
\ 4
Change ADC
input to Motor
Terminal A
v ADCOffset = ADC Result
State = OffsetRead Invert msh OiADC Offset
< PWMThreshold =
ADCRPM + ADCOffset
Limit PWMThreshold
to Max or Min
A 4 A 4)4
SM4 SM1 SM3

© 2002-2011 Microchip Technology Inc.

DS00857B-page 25

ANB857

FIGURE A-8: MOTOR CONTROL STATE MACHINE (CONT.)
SM4 SM1 SM3
v
VSetup
l ? Is
Is No PWMThreshold
motor =07
in Phase 4
No
Call SetTimer
Set Clear
A4 FullOnFlag FullOnFlag
State = Vidle | . |
< v
State = VSetup
Y Clear SpeedStatus
Yes State =
Vidle v
? Set ADC input
to PWM Pot
Is No
motor drive
active 4
State = RPMSetup
v |
Wait for ADC State = Yes
acquisition time VRead
: }
v
Start ADC No Is ADC No
Done?
Y ¢Yes
State = VRead
VSupply = ADC Result
State = BEMFSetup
) 4) 4 v
SM4 SM5 .G/IB

DS00857B-page 26

© 2002-2011 Microchip Technology Inc.

ANB857

FIGURE A-9: MOTOR CONTROL STATE MACHINE (CONT.)

SM4

Yes

in Phase 5

this the start
of the longest PWM

half cycle
?

No

Disable Timerl
clear on compare

v
Save current

compare word
(commutation time)

v
Set compare word
to 1/4 current
commutation time

v
State = BEMFIdle

PR

Yes

DeltaVl =
VSupply/2 - ADC result

SM4 State = BEMF2Idle

SM3

State =
BEMFSetup
?
No
State =
BEMFSetup >1&S
?
No)
Timerl
compare?
Force motor
drive active
v
Wait for ADC
acquisition time
v
Start ADC
v
Set compare word
to 3/4 current
commutation time
v
State = BEMFRead
.4
State =
BEMFRead
?
No
) 4
SM6

v

SM3

© 2002-2011 Microchip Technology Inc.

DS00857B-page 27

ANB857

FIGURE A-10: MOTOR CONTROL STATE MACHINE (CONT.)

SM4 @ SM3

State =

Yes
BEMF2Idle
? J
No .
Timerl No

Y >
Compare i

Yes State = ?

ﬁ BEMIZZRead Yes

Force motor
drive active

No

A

y
Wait for ADC
DeltaVv2 = acquisition time
VSupply/2 - ADC result
i v

State = RPMSetup Start ADC

A 4
Change ADC
input to PWM Pot

v
Set Timerl compare
word to saved
commutation time

A 4

Change compare
v mode to clear
Invalid State: Timerl on compare
Set ADC input to
PWM Pot
State = RPMSetup State = BEMF2Read

v »

<
«

y
(StateMachine End)

DS00857B-page 28 © 2002-2011 Microchip Technology Inc.

ANB857

SCHEMATICS

APPENDIX B:

SCHEMATIC A — MOTOR DRIVERS

FIGURE B-1:

S48 A4 (] 1010

00D ssaposuas Jop Auo paainhay (£

gld 94 vid

“sJUaLND yaeqhy
lojow qiosqe o} afle] Auaiagns aqisnp (7)
8Ll |[E/asU JaAIp pansap Jop anjeajaaas () £ B9rral
Sajop 5 p, 0l
TAF AP
AN Al
AE APt
Il 3
Wi VE NN 10
- - - Wi YT "V
—_ = —_ N e —
SOZEMH SOZETHI soEmy | WEM T = 00, Wi NMA——
r| 2 OEE
e
90 50 o) ADS - ASC A ane
i 471 470
9 = —_ 4w EE
502544l S0EG4Hl S0EG4Hl AL+ @2
R L1 = o
¢ | sarral Akt
0 70 10 %,
—_ —_ —_— Y AF =l S
AL+ A1+ AL+ Wi g
Cm? AR 8oy QAR -
' WE G
ge—— :mw,?@ A 4 QA g%
' Wi &
¥ = MAN—I A aps NAZ—> 10
T (e = 00, Wi 0EE
Al il N
dd [zz te) 07H
s J— £ I_I o 7
AVAYAY VAV e
. ECA A 1 [R
AL 6l 00E ¢ 12H —

DS00857B-page 29

© 2002-2011 Microchip Technology Inc.

ANB857

SCHEMATIC B — CONTROLLER

FIGURE B-2:

mmW_ _u_._m_u_ﬂ DEm._u_ _H_O_ m._.,z. ..__u_ th ale _”k.,”_] _.,_”_._._.___._, _u_m.u._._mE mtmﬂ_
Jed 5ed
W Josuas x/x/x../\wmw_
g Josuas x/x/xa/\mmw_
7 losuag émmw_
33
ALY THLX Jll
. o 71 LN0 S8A[T
0
12 Mpr 904 O[T
72 -
song | & - zHwomE
1010 4 ££849191d A
o] A
—7 1 2dsdreay LS/ L O
—=1 edsd/eaH 0dSd/0d—F—
¥ | wOSNQS/FOH TOSMOSEIH g
50 = 00S/59H L3I =
= MO LE0 Y I e —_
71 Larxe 208 MOLOoH g -
= —= rdSd/rad LNOM10/2IS0 — "l
—7 | 5dsd/sad NPT/ IS0 g 19510
—7 9dsdra SSAT 0sd Wi
£ 5 £dsdrzad QoA
_ T 554 S0/HNWZIH
I MG
=t aaA A 1
0 Nyoay [T A=t AGH
L —c 1 18 5SS/ NY/ SV =
AGH —=1 784 MO0V P — —_
s ENvEYH o bed Dzy
— vy ATHATN TV VN
—5 SaH LN Ly TR
1 98y 0N/ O — Ly Hed
o5 484 deAETIOW L7d v o
= 2N
T LTS LElH L0zH e
. e AVAVAY. AVATAY
T 02t Al I_|
1353 A

© 2002-2011 Microchip Technology Inc.

DS00857B-page 30

ANB857

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company'’s customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

APPENDIX C: SENSORED CODE

B R R R RS S R R R R R SRR R RS EEEEEEEEEEEEEEEEEEEEEEEERERESE

; Fi | enane: sensored. asm *
; Dat e: 11 Feb. 2002 *
; File Version: 1.0 *
. *
; Aut hor : W R. Brown *
; Conpany: M crochi p Technol ogy | ncor por at ed *

B R R R RS S R RS R RS R E R R RS EEEEEEEEEEEEEEEEEEEEEEEERERESES

; Fil es required: pl6f877.inc *

B R R R R R S S R R RS R R R E R R RS EEEEEEEEEEEEEEEEEEEEEEEREREES

; Not es: Sensored brushl ess notor control Min |oop uses 3-bit *
; sensor input as index for drive word output. PWM based on *
; Tinmer0 controls average notor voltage. PWM | evel is determ ned *
; PWM | evel is determ ned from ADC readi ng of potentioneter. *
. *
z**
I'ist p=16f 877 ; list directive to define processor
#i ncl ude <pl6f877.inc> ; processor specific variable definitions

__CONFIG _CP_OFF & WDT_OFF & _BODEN ON & PWRTE ON & _HS OSC & _WRT_ENABLE OFF & LVP_ON &
_DEBUG OFF & _CPD OFF

B R R R R

-k
’

;* Define variable storage

-k
’

CBLOCK 0x20

ADC ; PWM threshold is ADC result
Last Sensor ; last read notor sensor data
DriveWrd ; six bit nmotor drive data
ENDC

© 2002-2011 Microchip Technology Inc. DS00857B-page 31

ANB857

B R R R RS S R R R R R R R R R SRR EEEEEEEEEEEEEEEEEEEEEEREREE
’

-k

;* Define 1/0

-k

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

O f Mask
DrivePort

DrivePortTris

Sensor Mask
Sensor Por t
DirectionBit

B'11010101"
PORTC

TRI SC

B' 00000111"
PORTE
PORTA, 1

B R R R R R S R R R S S R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEERERESES
’

org 0x000 ; Startup vector

nop ; required for 1CD operation
clrf PCLATH ; ensure page bits are cleared
goto Initialize ; go to beginning of program
ORG 0x004 ; interrupt vector |ocation
retfie ; return frominterrupt

B R R R R R S R RS R R R R R R R EEEEEEEEEEEEEEEEEEEEEEEERERESES
’

-k
’

;* Initialize I/O ports and peripherals

-k

Initialize
clrf Dri vePort ; all drivers off
banksel TRI SA
; setup 1/0
clrf DrivePortTris ; set notor drivers as outputs
nmovl w B' 00000011" ; A/D on RAO, Direction on RAl, Mtor sensors on RE<2:0>
nmovwf TRI SA ;
; setup TinmerO
nmov| w B' 11010000' ; Tinmer0: Fosc, 1:2
novwf OPTlI ON_REG
; Setup ADC (bankl)
nmov| w B' 00001110 ; ADC left justified, ANO only
novwf ADCON1
banksel ADCONO
; setup ADC (bankO)
nmov| w B' 11000001" ; ADC clock fromint RC, ANO, ADC on
novwf ADCONO
bsf ADCONO, GO ; start ADC
clrf Last Sensor ; initialize |ast sensor reading
cal | Conmmut at e ; determi ne present notor position
clrf ADC ; start speed control threshold at zero until first ADC
readi ng

B R R R R]

-k
’

;* Main control |oop
-k
Loop
cal | ReadADC ; get the speed control fromthe ADC
incfsz ADC, w ; if ADCis OxFF we're at full speed - skip tiner add
goto PVWM ; add Tiner0O to ADC for PWM
novf DriveWrd, w ; force on condition
goto Drive ; continue
PWM

DS00857B-page 32 © 2002-2011 Microchip Technology Inc.

ANB857

nmov f
addwf
nmovf
btfss
andl w
Drive
novwf
call
goto

ReadADC

ADC, w

TMRO, w
DriveWrd, w
STATUS, C

O f Mask

DrivePort
Conmut at e
Loop

restore ADC readi ng

add it to current TinmerO

restore conmutation drive data

test if ADC + TinmerO resulted in carry
no carry - suppress high drivers

enabl e notor drivers
test for comutation change
repeat |oop

B R R R R]
’

- *

;* If the ADCis ready then read the speed control potentioneter
;* and start the next reading

- *

bt fsc
return

nmovf
bsf
movw
return

ADCONO, NOT_DONE

ADRESH, w
ADCONO, GO
ADC

is ADC ready?
no - return

get ADC result
restart ADC
save result in speed control threshold

R R R R R S R R R R R R R R SRR EEEEEEEEEEEEEEEEEEEEEERERESE
’

-k

;* Read the sensor

inputs and if a change is sensed then get the

;* corresponding drive word fromthe drive table

- *

Comut at e
nmovl w
andwf
xor wf
btfsc
return

xor wf
btfss
goto

nmovl w
nmovw
nmovl w
goto
FwdCom

nmovl w
movw
nmovl w

addwf
btfsc
i ncf

call
movw
return

CetDrive
movw

Sensor Mask
SensorPort,w
Last Sensor, w
STATUS, Z

Last Sensor, f
DirectionBit
FwdCom

Hl GH RevTabl e
PCLATH

LOW RevTabl e
Cong

H GH FwdTabl e
PCLATH
LOW FwdTabl e

Last Sensor, w
STATUS, C
PCLATH, f

CetDrive
DriveWord

PCL

retain only the sensor bits

get sensor data

test if notion sensed

zero if no change

no change - back to the PWM | oop

repl ace |l ast sensor data with current
test direction bit
bit is zero - do forward comrutation

reverse conmmutation
get Ms byte of table
prepare for conputed GOTO
get LS byte of table

forward comut ation
get MS byte of table
prepare for conmputed GOTO
get LS byte of table

add sensor offset
page change in tabl e?
yes - adjust M byte

get drive word fromtable
save as current drive word

© 2002-2011 Microchip Technology Inc.

DS00857B-page 33

ANB857

B R R R RS S R R R R R R R R R SRR EEEEEEEEEEEEEEEEEEEEEEREREE
’

The drive tables are built based on the foll owi ng assunptions:

1) There are six drivers in three pairs of two

2) Each driver pair consists of a high side (+V to nptor) and | ow side (notor to ground) drive

3) Alin the drive word will turn the corresponding driver on

4) The three driver pairs correspond to the three motor windings: A B and C

5) Wnding Ais driven by bits <1> and <0> where <1> is A's high side drive

6) Wnding B is driven by bits <3> and <2> where <3> is B's high side drive

7) Wnding Cis driven by bits <5> and <4> where <5> is C s high side drive

8) Three sensor bits constitute the address offset to the drive table

9) A sensor bit transitions froma 0 to 1 at the nonent that the correspondi ng
wi nding's high side forward drive begins.

10) Sensor bit <0> corresponds to wi nding A

11) Sensor bit <1> corresponds to wi nding B

12) Sensor bit <2> corresponds to wi nding C

E N S T R N N N

-k

FwdTabl e

retlw B' 00000000' ; invalid
retlw B' 00010010' ; phase 6
retlw B' 00001001" ; phase 4
retlw B' 00011000' ; phase 5
retlw B' 00100100' ; phase 2
retlw B' 00000110° ; phase 1
retlw B' 00100001" ; phase 3
retlw B' 00000000' ; invalid
RevTabl e

retlw B' 00000000' ; invalid
retlw B' 00100001" ; phase /6
retlw B' 00000110° ; phase /4
retlw B' 00100100' ; phase /5
retlw B' 00011000' ; phase /2
retlw B' 00001001" ; phase /1
retlw B' 00010010' ; phase /3
retlw B' 00000000' ; invalid
END ; directive 'end of program

DS00857B-page 34 © 2002-2011 Microchip Technology Inc.

ANB857

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company'’s customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

APPENDIX D: SENSORLESS CODE

R R R R RS S R S R S R RS R E R R RS EEEEEEEEEEEEEEEEEEEEEEEERERESE

; Fi | enane: snsrless.asm *
; Dat e: 14 Jan. 2002 *
; File Version: 1.0 *
. *
; Aut hor : W R Brown *
; Conpany: M crochi p Technol ogy | ncor por at ed *
. *
: *
;**

. *
; Fil es required: pl6f877.inc *
. *
: x
: *
;**

. *
; Not es: Sensorl ess brushl ess nmotor control *
. *
; Cl osed | oop 3 phase brushless DC nmotor control. *
; Two potentiometers control operation. One potentioneter (A0) *
; controls PWM (voltage) and RPM (fromtable). The other *
; potentionmeter (Al) provides a PW offset to the PWM derived *
; from AO. Phase A motor terminal is connected via voltage *
; divider to A3. This is read while the drive is on during *
; phase 4. The result is the peak applied voltage (Vsupply). *
; A3 is also read while the drive is on at two tinmes during *
; phase 5. The result is the BEMF voltage. The BEMF voltage is *
; read at the quarter (tl1l) and mid (t2) points of the phase 5 *
; period. BEMF is conpared to VSupply/2. |If BEMF is above *
; VSupply/2 at t1 and bel ow VSupply/2w at t2 then no speed *
; adjustment is made. |If BEMF is high at both t1 and t2 then *
; the speed is reduced. If BEMF is low at t1 and t2 then the *
; speed i s increased. *

B R R R R RS S S R R R R RS EEEEEEEEEEEEEEEEEEEEEEERERESES

list P = PICL6F877
i ncl ude "pl6f877.inc"
__CONFIG _CP_OFF & _WRT_ENABLE OFF & _HS OSC & _WDT_OFF & _PWRTE ON & _BODEN ON

; Accel eration/Decel eration Time = RanpRate * 256 * 256 * TinerOTimer0 prescale / Fosc

#defi ne Accel Del ay D 100° ; determines full range acceleration tine
#def i ne Decel Del ay D 10 ; determines full range deceleration tine
#defi ne ManThr esh 0ox3f ; Manual threshold is the PWM potenti onenter

; readi ng above which RPMis adjusted autonatically
#defi ne Aut oThr esh 0x100- ManThr esh

© 2002-2011 Microchip Technology Inc. DS00857B-page 35

ANB857

O f Mask
Invalid
Phasel
Phase2
Phase3
Phase4
Phase5
Phase6

#def i ne
#def i ne
#def i ne

R R R SRR RS S R R R R R R R R EEEEEEEEEEEEEEEEESEE]
’

-k

equ
equ
equ
equ
equ
equ
equ
equ

CARRY
ZERO
subw

;* Define I/O Ports

-k

#def i ne
#def i ne

Readl ndi cat or

DrivePort

B'11010101'
B' 00000000°
B' 00100001"
B' 00100100°
B' 00000110°
B' 00010010
B' 00011000°
B' 00001001’

STATUS, C
STATUS, Z
subl w

PORTB, 0
PORTC

; PMMoff kills the high drives

; inval

; phase
; phase
; phase
; phase
; phase
; phase

d
1

2
3
4
5
6

C hi gh,
C hi gh,
A high,
A hi gh,
B hi gh,
B hi gh,

Al ow
B | ow
B | ow
C | ow
C | ow
A |l ow

khkkhkkhkkhhhhhhhhhhhhhkhkhkhkhkhkhkhhkhhhhhdkdxkxkx*k

; diagnostic scope trigger for BEM readings
drive and | ock status

; notor

BEE R R RS R R R RS R R R R R R R R R R R R R EEEEEEEEEEEEREEREEEEREEREEREERERSES

Defi ne RAM vari abl es

CBLOCK 0x20

STATE
PWMThr esh
Phasel ndx
Drive
RPM ndex
ADCRPM
ADCO f set
Preset Hi
Preset Lo
Fl ags
Vsuppl y
Del t avl
Del t av2
CCPSaveH
CCPSavelL
CCPT2H
CCPT2L
RampTi nmer
xCount

St at us

ENDC

; Machine state
; PWM t hreshol d

; Current notor

; Motor drive word

; RPM | ndex wor kspace
; ADC RPM val ue

; Delta offset to ADC PWM t hreshol d

; speed control
; speed control

; general

pur pose flags

phase i ndex

; Supply vol tage ADC readi ng
; Difference between expected and actual BEMF at T/4
; Difference between expected and actual BEMF at T/2

; Storage for
; Storage for

timer conpare MS byte
timer conpare LS byte

phase time when finding DeltaV
phase tine when finding DeltaV

; Workspace for determining T/2 and T/4

; Workspace for determining T/2 and T/ 4

; TinmerO post scaler for accel/decel ranp rate
pur pose counter workspace

; general

; relative speed indicator status

DS00857B-page 36

© 2002-2011 Microchip Technology Inc.

ANB857

BEE R RS R R R R SRR R R R R R EE R RS EEEEEEEEEEEEREEREEEEREEREEREERERSES

; Define Fl ags

#define DriveOnFl ag Fl ags, 0
#define Aut oRPM Fl ags, 1
; Fl ags, 3
#define Full OnFl ag Fl ags, 4
#define Tnr OOvf Fl ags, 5
#define Tmr0Sync Fl ags, 6
; Fl ags, 7
#define BEMFlLow Del taVvi, 7
#define BEMF2Low Del tav2, 7

; Flag for invoking drive disable mask when cl ear
; RPMtimer is adjusted automatically
; Undefined

; PMMthreshold is set to maxi mumdrive
; TinmerO overflow flag

; Second Tiner0 overflow flag

; undefined

; BEMF1 is low if DeltaVl is negative
; BEMF2 is low if DeltaV2 is negative

BEE R R R R R R R RS R R R R R R R R RS EEEEEEEEEEEEEEREEEREEEREEEEEEEEESES
’

-k
’

;* Define State machine states and i ndex nunbers

-k

sRPMset up equ D o ; Wait for Phasel, Set ADC GO, RAl->ADC

sRPMRead equ sRPMSet up+1 ; Wait for ADC nDONE, Read ADC- >RPM

sOf f set Set up equ sRPMRead+1 ; Wait for Phase2, Set ADC GO, RA3->ADC

sOf f set Read equ sOf f set Set up+1 ; Wait for ADC nDONE, Read ADC- >ADCO f set

sVSet up equ sOf f set Read+1 ; Wait for Phase4, Drive On, wait 9 uSec, Set ADC GO

svidl e equ sVSet up+1 ; Wait for Drive On, wait Tacq, set ADC GO

sVRead equ sVl dl e+l ; Wait for ADC nDONE, Read ADC->Vsupply

sBEMFSet up equ sVRead+1 ; Wait for Phase5, set Tinerl conpare to half phase tine

SBEMFI dl e equ SBEMFSet up+1 ; Wait for Tinerl conpare, Force Drive on and wait 9 uSec,
; Set ADC GO, RAO->ADC

sBEMFRead equ SBEMFI dl e+1 ; Wait for ADC nDONE, Read ADC >Vbenf

SBEMF21 dl e equ SBEMFRead+1 ; Wait for Tinerl conpare, Force Drive on and wait 9 uSec,
; Set ADC GO, RAO->ADC

sBEMF2Read equ SBEMF2I dl e+1 ; Wait for ADC nDONE, Read ADC >Vbenf

EEE R R R R R R R RS R R R R R R R R R EEEEEEEEEEEEEEEEREEREREEREEREERERERSES
’

-k

*

; The ADC i nput

-k
;* by XORing the control register wt
;* defined here:

: *

ADCOt 01 equ B' 00001000*

ADC1t 03 equ B' 00010000’

ADC3t 00 equ B' 00011000’

i s changed depending on the STATE
Each STATE assumes a previous input selection and changes the sel ection

h the appropriate ADC i nput change nask

; changes ADCONO<5: 3> from 000 to 001
; changes ADCONO<5: 3> from 001 to 011
; changes ADCONO<5: 3> from 011 to 000

BEE R R R R R R R R R R R R R R R R R EEEEEEEEEEEEREREEREEEREEREEREERERSES
’

BEEEEEEEEEEEEEEEEEEEEEEEEEESESES
’

PROGRAM

STARTS HERE khkkhkkhkkhkhhhkhhhhhhkhkhkhkhkhhhkhkhhhhhddxdxkx*k

B R R R R R R R X R X R
’

org 0x000

nop

goto Initialize

org 0x004

bsf Tnr OOvf ;

bsf Tnr 0Sync ;

bcf | NTCON, TOI F

retfie ;
Initialize

clrf PORTC ;

clrf PORTB

Timer0 overflow flag used by accel /decel tiner
TimerO0 overflow flag used to synchroni ze code execution

all drivers off

© 2002-2011 Microchip Technology Inc.

DS00857B-page 37

ANB857

banksel TRI SA

; setup 1/0
clrf TRI SC ; notor drivers on PORTC
nmov| w B' 00001011" ; A/Don RAO (PWM, RA1 (Speed) and RA3 (BEMF)
nmovwf TRI SA ;
mov| w B'11111110° ; RBO is |ocked indicator
novwf TRI SB
; setup TinmerO
nmov| w B' 11010000' ; Tinmer0: Fosc, 1:2
novwf OPTlI ON_REG
bsf I NTCON, TOI E ; enable TimerO interrupts
; Setup ADC
nmov| w B' 00000100' ; ADC left justified, ANO, ANl
nmovwf ADCON1
banksel PORTA
nmov| w B' 10000001" ; ADC cl k = Fosc/ 32, ANO, ADC on
novwf ADCONO
; setup Timer 1
nmov| w B' 00100001" ; 1:4 prescale, internal clock, tiner on
novwf T1CON
; setup Timer 1 conpare
nmov| w OxFF ; set conpare to maxi num count
nmovwf CCPR1L ; LS conpare register
novwf CCPR1H ; MBS conpare register
nmov| w B' 00001011" ; Timer 1 conpare node, special event - clears tinerl
novwf CCP1CON

; initialize RAM

clrf PWMThr esh

nmov| w D 6'

nmovwf Phasel ndx

clrf Fl ags

clrf St at us ;

clrf STATE ; Loopl dl e- >STATE

bcf I NTCON, TOI F ; ensure TinmerO overflow flag is cleared
bsf I NTCON, G E ; enable interrupts

Mai nLoop

B R R R R
’

; PWM Conmmut ation, State machi ne | oop

’
B R R R R R R R R R R R R R R R R R EEEEEEEEEEEEEEEEEE]
’

btfsc PI R1, CCP1I F ; time for phase change?
cal | Conmmut at e ; yes - change notor drive
PWM
bsf DriveOnFl ag ; pre-set flag
btfsc Ful | OnFl ag ; is PMWM 1 evel at maxi mun®?
goto PWVD2 ; yes - only commutation is necessary
nmovf PWMThr esh, w ; get PWM threshol d
addwf TMRO, w ; conpare to TinmerO
btfss CARRY ; drive is onif carry is set
bcf DriveOnFl ag ; timer has not reached threshold, disable drive
cal | Dri veMot or ; output drive word
PWVD2
cal | LockTest
cal | St at eMachi ne ; service state machine
goto Mai nLoop ; repeat | oop

DS00857B-page 38 © 2002-2011 Microchip Technology Inc.

ANB857

St at eMachi ne

nmovl w SMrabl eEnd- SMrabl e-1 ; STATE table nust have 2”n entries
andwf STATE, f ; limt STATE index to state table
nmov| w hi gh SMrabl e ; get high byte of table address
nmovwf PCLATH ; prepare for conputed goto
nmov| w | ow SMrabl e ; get low byte of table address
addwf STATE, w ; add STATE index to table root
btfsc CARRY ; test for page change in table
i ncf PCLATH, f ; page change adj ust
nmovwf PCL ; junp into table
SMrabl e ; number of STATE table entries MJUST be evenly divisible by 2
goto RPMSet up ; Wait for Phasel, Set ADC GO, RAl->ADC, clear Tinmer0O overflow
goto RPMRead ; Wait for ADC nDONE, Read ADC- >RPM
goto O f set Set up ; Wait for Phase2, Set ADC GO, RA3->ADC
goto O f set Read ; Wait for ADC nDONE, Read ADC- >ADCU f set
goto VSet up ; Wait for Phase4
goto Vi dl e ; Wait for Drive On, wait Tacq, set ADC GO
got o VRead ; Wait for ADC nDONE, Read ADC->Vsupply
got o BEMFSet up ; Wait for Phase5, set Tinerl conpare to half phase tine
goto BEMFI dI e ; When Tinmerl conpares force Drive on, Set ADC GO after Tacq,
RAQ- >ADC
goto BEMFRead ; Wait for ADC nDONE, Read ADC- >Vbenf
goto BEMF2I dl e ; When Tinmerl conpares force Drive on, Set ADC GO after Tacq,
RAQ- >ADC
goto BEMF2Read ; Wait for ADC nDONE, Read ADC- >Vbentf
; fill out table with InvalidStates to make number of table entries evenly divisible by 2
goto Inval i dState ; invalid state - reset state machine
got o InvalidState ; invalid state - reset state nachine
goto InvalidState ; invalid state - reset state nachine
goto Inval i dState ; invalid state - reset state machine
SMrabl eEnd
RPMSet up ; Wait for Phasel, Set ADC GO, RA1->ADC, clear TinerO overflow
nmov| w Phasel ; conpare Phasel word. ..
xor wf Drive,w ; ...with current drive word
bt fss ZERO ; ZERO i f equal
return ; not Phasel - remain in current STATE
bsf ADCONO, GO ; start ADC
nmov| w ADCOt 01 ; prepare to change ADC i nput
xor wf ADCONO, f ; change from ANO to ANL
i ncf STATE, f ; next STATE
bcf Tnr 0Sync ; clear TimerO overflow
return ; back to Main Loop
RPMRead ; Wait for ADC nDONE, Read ADC- >RPM
btfsc ADCONO, GO ; is ADC conversion finished?
return ; no - remain in current STATE
nmovf ADRESH, w ; get ADC result
nmovwf ADCRPM ; save in RPM
i ncf STATE, f ; next STATE
return ; back to Main Loop

© 2002-2011 Microchip Technology Inc.

DS00857B-page 39

ANB857

O f set Set up

Wait for Phase2, Set ADC GO, RA3->ADC

conpare Phase2 word. ..

...with current drive word

ZERO i f equal

not Phase2 - remain in current STATE

start ADC

prepare to change ADC i nput
change from AN1 to AN3
next STATE

back to Main Loop

nmov| w Phase?2
xor wf Drive,w
btfss ZERO
return
bsf ADCONO, GO
nmov| w ADCLt 03
xor wf ADCONDO, f
i ncf STATE, f
return

O f set Read

btfsc ADCONO, GO

return

novf ADRESH, w
xor | w H 80’

nmovwf ADCO f set
addwf ADCRPM w
btfss ADCOr f set, 7
goto Over f | owTest
btfss CARRY

andl w H 00’

goto Threshol d

Over f | owTest

Wait for ADC nDONE, Read ADC- >ADC f set

is ADC conversion finished?
no - remain in current STATE

get ADC result

conpl emrent MSB for +/- offset
save in offset

add offset to PAMM result

is offset a negative nunber?
no - test for overflow

under f | ow?
yes - force mni mum

bt fsc CARRY ; overflow?
nmov| w Hff' ; yes - force maxi num
Threshol d
nmovwf PWMThr esh ; PWMthreshold is RPMresult plus offset
btfsc ZERO ; is drive off?
goto DriveOf f ; yes - skip voltage neasurenents
bcf Ful I OnFl ag ; pre-clear flag in preparation of conpare
subl w OxFD ; full on threshold
btfss CARRY ; CY =0 if PWrhresh > Full On
bsf Ful I OnFl ag ; set full on flag
i ncf STATE, f ; next STATE
return ; back to Main Loop
DriveO f
clrf St at us ; clear speed indicators
nmov| w B'11000111' ; reset ADC input to ANO
andwf ADCONO, f ;
clrf STATE ; reset state machine
return
VSet up ; Wait for Phase4
nmov| w Phase4 ; conpare Phase4 word. ..
xor wf Drive,w ; ...with current Phase drive word
bt fss ZERO ; ZERO i f equal
return ; not Phase4 - remain in current STATE
cal | Set Ti mer ; set tiner value fromRPMtable
i ncf STATE, f ; next STATE
return ; back to Main Loop

DS00857B-page 40

© 2002-2011 Microchip Technology Inc.

ANB857

Vidl e

; Wait for Drive On, wait Tacg, set ADC GO
bt fss Dri veOnFl ag ; is Drive active?
return ; No - renmin in current STATE
cal | Tacq ; notor Drive is active - wait ADC Tacq tine
bsf ADCONO, GO ; start ADC
i ncf STATE, f ; next STATE
return ; back to Main Loop
VRead ; Wait for ADC nDONE, Read ADC- >Vsupply
btfsc ADCONO, GO ; is ADC conversion finished?
return ; No - renmin in current STATE
novf ADRESH, w ; get ADC result
nmovwf Vsuppl y ; save as supply vol tage
i ncf STATE, f ; next STATE
bcf Trnr 0Sync ; clear TimerO overflow
return ; back to Main Loop
BEMFSet up ; Wait for Phaseb5, set Tinerl conpare to half phase tinme
nmov| w Phase5 ; conpare Phase5 word. ..
xor wf Drive,w ; ...with current drive word
btfss ZERO ; ZERO i f equal
return not Phase5 - remain in current STATE
bt fss Tnr 0Sync synchronize with Tinmer0
return
bt fss PWMThr esh, 7 i f PWMThresh > 0x80 then ON is |onger than OFF
goto BEMFS1 OFF is longer and motor is currently off - conpute now
bt fss Dri veOnFl ag ON is longer - wait for drive cycle to start
return not started - wait
BEMFS1
bcf CCP1CON, 0 di sabl e special event on conpare
novf CCPR1H, w save current capture conpare state
novwf CCPSaveH
nmovwf CCPT2H save copy in workspace
novf CCPRLL, w | ow byte
novwf CCPSavelL save
nmovwf CCPT2L and save copy
bcf CARRY pre-clear carry for rotate
rrf CCPT2H, f di vide phase time by 2
rrf CCPT2L, f
bcf CARRY pre-clear carry
rrf CCPT2H, w di vide phase time by another 2
nmovwf CCPR1H first BEMF reading at phase T/4
rrf CCPT2L, w
novwf CCPR1L
i ncf STATE, f next STATE
return back to Main Loop

© 2002-2011 Microchip Technology Inc.

DS00857B-page 41

ANB857

BEMFI dl e
>ADC

btfss
return

bsf
call
bsf
call
bsf
bcf

PI R1, CCP1I F

Dri veOnFl ag
Dri veMot or
Readl ndi cat or
Tacq
ADCONO, GO
Readl ndi cat or

1
1
’
i

1

When Tinmerl conpares force Drive on,

timer
no -

conpare?
remain in current STATE

force drive on for BEMF readi ng
activate notor drive

Di agnostic

wait ADC acquisition time

start ADC

Di agnostic

; setup to capture BEMF at phase 3/4 T

novf CCPT2H, w
addwf CCPR1H, f ; next conpare at phase 3/4 T
nmovf CCPT2L, w ;
addwf CCPRLL, f ; set T/2 Isb
btfsc CARRY ; test for carry into Msh
i ncf CCPR1H, f ; performcarry
bcf PI R1, CCP1l F ; clear tiner conpare interrupt flag
i ncf STATE, f ; next STATE
return ; back to Main Loop
BEMFRead ; Wait for ADC nDONE, Read ADC- >Vbenf
bt fsc ADCONO, GO ; is ADC conversion finished?
return ; Nno - remain in current STATE
rrf Vsupply, w ; divide supply voltage by 2
subwf ADRESH, w ;. Vbenf - Vsupply/2
nmovwf Del taVvl ; save error voltage
i ncf STATE, f ; next STATE
return ; back to Main Loop
BEMF2I dl e ; When Tinmerl conpares force Drive on, Set ADC GO after Tacq, RAO-
>ADC
bt fss PI R1, CCP1l F ; timer conpare?
return ; No - remain in current STATE
bsf Dri veOnFl ag ; force drive on for BEMF reading
cal | Dri veMot or ; activate notor drive
bsf Readl ndi cator ; Diagnostic
cal | Tacq ; wait ADC acquisition time
bsf ADCONO, GO ; start ADC
bcf Readl ndi cator ; Diagnostic
nmov| w ADC3t 00 ; prepare to change ADC i nput
xor wf ADCONO, f ; change from AN3 to ANO

; restore Tinmerl

nmovf
nmovwf
nmov f
nmovwf
bcf

bsf

i ncf
return

phase time and

CCPSaveH, w
CCPR1H
CCPSavel, w
CCPR1L

Pl R1, CCP1I F
CCP1CON, 0
STATE, f

speci al

1

event conpare node

next conmpare at phase T

set T Isb

clear timer conpare interrupt flag
enabl e special event on conpare
next STATE

back to Main Loop

DS00857B-page 42

© 2002-2011 Microchip Technology Inc.

Set ADC GO after Tacq, RAO-

ANB857

BEMF2Read

btfsc ADCONO, GO

return

rrf Vsuppl y, w
subwf ADRESH, w
novwf Del t av2
clrf STATE
return

Wait for ADC nDONE, Read ADC->Vbenf

is ADC conversion finished?
no - remain in current STATE

di vide supply vol tage by 2
Vbenf - Vsupply/2

save error voltage

reset state nmachine to beginning
back to Main Loop

Inval i dSt at e
mov| w B'11000111'

andwf ADCONO, f
clrf STATE
return

trap for invalid STATE i ndex

reset ADC input to ANO

Tacq

B R R R R
’

; Sof tware delay for ADC acquisition time
; Delay time = Tosc*(3+3*xCount)

DR R R R RS R R R R R R R R R R R R R EEEEEEEEEEEEEEES
’

nmov| w D 14
nmovw xCount
decfsz xCount , f
got o $-1
return

LockTest

14 equates to approx 9 uSec del ay

| oop here until

time conplete

BE R R R R R R R R R R R R R R R EEEEEEEEEEEEEEEES

; T is the commutati on phase period. Back EMF is neasured on the
; floating nmotor termnal at two times during T to determ ne
; the approxi mate zero crossing of the BEMF. BEMF | ow neans that

; the measured BEMF is bel ow (supply voltage)/?2.
; If BEMF is lowat 1/4 T then accelerate.

; If BEMF is high at 1/4 T and low at 3/4 T then speed is K

; If BEMF is high at 1/4 T and 3/4 T then decel erate.

; Lock test conputation is synchronized to the PWM cl ock such
; that the conmputation is performed during the PWM ON or OFF

; time whichever is |onger.

B R R R R R R R R R R R R EEEEEEEEEEEEEEEES
’

; synchronize test with start of Tiner0

btfss Tnr OOvf

return
btfss PWMThr esh, 7
goto LTO5

btfss Dri veOnFl ag
return

has Ti ner0 w apped around?

no - skip lock test

if PWMThresh > 0x80 then ON is |onger than OFF

OFF is |l onger and notor

is currently off

conput e now

ONis longer - wait for drive cycle to start

not started -

wai t

© 2002-2011 Microchip Technology Inc.

DS00857B-page 43

ANB857

LTO5
bcf Tnr OOV f ; clear synchronization flag
decfsz RampTi ner, f ; RanpTi mer controls the accel eration/deceleration rate
return

; use lock results to control RPMonly if not manual node

bsf Aut oRPM ; preset flag

nmovf ADCRPM w ; conpare RPM potentioneter...

addl w Aut oThr esh ; ...to the auto control threshold

bt fss CARRY ; CARRY is set if RPMis > auto threshold
bcf Aut oRPM ; not in auto range - reset flag

bt fss BEMF1Low ; is first BEMF bel ow Supply/2

goto LT20 ; no - test second BEMF

LT10
; accelerate if BEMF at 1/4 T is bel ow Supply/2

novl w B' 10000000’ ; indicate lock test results
nmovwf St at us ; status is ORd with drive word later
nmov| w Accel Del ay ; set the tiner for acceleration delay
nmovwf RampTi nmer ;
bt fss Aut oRPM ; is RPMin auto range?
goto ManCont r ol ; no - skip RPM adj ust nent
incfsz RPM ndex, f ; increnent the RPMtable index
return ; return if Index didn't wap around
decf RPM ndex, f ; top limt is OXFF
return
LT20
bt fsc BEMF2Low ; BEMF1 was high. ..
goto ShowLocked ; ... and BEMF2 is low - show | ocked

; decelerate if BEMF at 3/4 T is above Supply/2

nmov| w B' 01000000' ; indicate lock test results
novwf St at us ; status is ORd with drive word |ater
nmovl w Decel Del ay ; set the tiner for deceleration delay
nmovwf RampTi nmer ;
bt fss Aut oRPM ; is RPMin auto range?
goto ManCont r ol ; no - skip RPM adj ust ment
decfsz RPM ndex, f ; set next |ower RPMtable index
return ; return if index didn't wap around
i ncf RPM ndex, f ; bottomlimt is O0x01
return

ShowLocked
nmov| w B' 11000000' ; indicate lock test results
nmovwf St at us ; status is ORd with drive word later
nmovl w Decel Del ay ; set the tiner for deceleration delay
nmovwf RampTi nmer ;
bt fsc Aut oRPM ; was RPM set autonatically?
return ; yes - we're done

DS00857B-page 44 © 2002-2011 Microchip Technology Inc.

ANB857

ManCont r ol
nmov f
nmovwf
return

Comut at e

B R R R R R R R R R R R R R R EEEEEEEEEEEEEEEEEEEEEEE]
’

ADCRPM w
RPM ndex

1

get

RPM pot ent i onet er
...and set table index directly

; Commut ation is triggered by PIRL<CCP1llF> fl ag.

; This flag is set when timerl equals the conpare register.

; When BEMF nmeasur enent
; cl eared automatically (special

; I gnore the PIRL<CCP1ll F> flag when speci al
; because the flag is for
; | f BEMF neasurenent

is active the conpare tine is not

event trigger

BEMF neasur enent .
is not active then decrenent phase table

; i ndex and get the drive word fromthe table.
; drive word in a global

BE R R R R R R R R R R R R R R R R R E R EEEEEEEEEEEEEEEES
’

btfss
return

bcf

nmov| w
nmovwf
decfsz
goto
nmov| w
nmovwf
addl w
btfsc
i ncf
cal |
nmovwf
Dri veMbt or

nmov f
btfss
andl w
i orwf
nmovwf
return

CetDrive
nmovwf

OnTabl e
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

Set Ti mer

CCP1CQON, 0

PI R1, CCP1l F

hi gh OnTabl e
PCLATH
Phasel ndx, w
$+2

D 6

Phasel ndx
LOW OnTabl e
CARRY
PCLATH, f
GetDrive
Drive

Drive,w

Dri veOnFl ag
O f Mask
Status,w
DrivePort

PCL

Invalid
Phase6
Phase5
Phase4
Phase3
Phase2
Phasel
Invalid

variabl e and output to notor drivers.

1

1

i s special

no -

cl ear

set

upper

trigger

program count er

is off).
is off

Save the

interrupt flag

bits

decrenent to next phase

skip reset

if not zero

phase counts 6 to 1
save the phase index

test

for

possi bl e page boundary

page boundary adj ust

save notor

rest

ore notor

drive word

drive word

test drive enable flag

high drive if PMMis off
show speed indicators

output to notor drivers

kill

conput ed goto

readi ng. ..

event on conpare enabl ed?
this is a BEMF nmeasurenent,

l et state nmachine handle this

© 2002-2011 Microchip Technology Inc.

DS00857B-page 45

ANB857

B R R R R SRR R R R R R R R EEEEEEEEEEEEEEEEEEEEEES

; This sets the CCP nodul e conpare registers for tiner 1.
phase period is the time it takes timer 1

; The ot or
; to count fromO to the conpare val ue.
; is configured to clear tinmer

The CCP nodul e

1 when the conpare occurs.

; Get the timerl conpare variable fromtwo | ookup tables, one
; for the conpare high byte and the other for the | ow byte.

R R R R R R R S R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEES
’

call
nmovwf
cal |
nmovwf
return

Set Ti mer Hi gh
nmovl w
nmovwf
nmov| w
addwf
btfsc
i ncf
nmovwf

Set Ti mer Low
nmovl w
nmovwf
nmov!| w
addwf
btfsc
i ncf
nmovwf

Set Ti mer Hi gh
CCPR1H
Set Ti mer Low
CCPR1L

hi gh T1Hi ghTabl e
PCLATH

| ow T1Hi ghTabl e
RPM ndex, w
STATUS, C

PCLATH, f

PCL

hi gh TlLowTabl e
PCLATH

| ow TlLowTabl e
RPM ndex, w
STATUS, C
PCLATH, f

PCL

#i ncl ude "BLDCspd4.inc"

end

Timerl Hi gh byte preset

Tinmerl Low byte preset

| ookup preset val ues
hi gh bytes first

add tabl e index
test for table page crossing

| ookup - result
repeat for |ower byte
add tabl e index

test for table page crossing

| ookup - result

returned in W

returned in W

DS00857B-page 46

© 2002-2011 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=—1S0/TS 16949:2002 —

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, fPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEYV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002-2011, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.

{9 Printed on recycled paper.

ISBN: 978-1-61341-156-8

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

© 2002-2011 Microchip Technology Inc.

DS00857B-page 47

MICROCHIP

Worldwide Sales and Service

AMERICAS
Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, Ml
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong

Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqging
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3180
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai

Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian

Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

05/02/11

© 2002-2011 Microchip Technology Inc.

DS00857B-page 48

http://support.microchip.com
http://www.microchip.com

	AN857
	Introduction
	Anatomy of a BLDC
	FIGURE 1: Simplified BLDC Motor Diagrams

	Sensored Commutation
	FIGURE 2: Sensor Versus Drive Timing
	FIGURE 3: three Phase Bridge
	TABLE 1: CW Sensor and Drive Bits by Phase Order
	TABLE 2: CW Sensor and Drive Bits By Sensor Order
	TABLE 3: CCW Sensor and Drive Bits
	FIGURE 4: Commutation code Segment
	FIGURE 5: DC Motor Equivalent Circuit
	FIGURE 6: Sensored Drive Flowchart

	Sensorless Motor Control
	Determining the BEMF
	FIGURE 7: BEMF Equivalent Circuit
	FIGURE 8: BEMF at 100% Drive
	FIGURE 9: BEMF at 50% Drive
	FIGURE 10: Drive On vs. Drive Off BEMF
	FIGURE 11: Pittman BEMF Waveforms

	Open-Loop Speed Control
	Closed-Loop Speed Control
	FIGURE 12: BEMF Sample Times

	Acceleration and Deceleration Delay
	Determining The Commutation Time Table Values
	TABLE 4: Commutation Time Table Values
	FIGURE 13: PWM Look-up Table GEnerator

	Using Open-Loop Control to Determine Motor Characteristics
	FIGURE 14: Motor Response Scope Determination

	Constructing The Sensorless Control Code
	Appendix A: Sensorless Control Flowchart
	FIGURE A-1: Main Loop
	FIGURE A-2: MOtor Commutation
	FIGURE A-3: MOtor Driver Control
	FIGURE A-4: Phase Drive Period
	FIGURE A-5: Motor Speed Locked with Commutation Rate
	FIGURE A-6: Motor Speed Locked With Commutation Rate (Cont.)
	FIGURE A-7: MOtor Control STate Machine
	FIGURE A-8: Motor Control STate Machine (Cont.)
	FIGURE A-9: MOtor Control STate Machine (Cont.)
	FIGURE A-10: MOtor Control State mACHINE (cONT.)

	Appendix B: Schematics
	FIGURE B-1: Schematic A – mOTOR dRIVERS
	FIGURE B-2: Schematic B – cONTROLLER

	Appendix C: Sensored Code
	Appendix D: Sensorless Code
	Trademarks
	Worldwide Sales

