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C1VOH,p= -2-w cos wt
nr

C in Fig. 7-7. Two typical open surfaces with rim C may be chosen: (1) a planar
disk surface S1' or (2) a curved surface S2 passing through the dielectric medium.
Symmetry around the wire ensures a constant H,p along the contour C. The line
integral on the left side of Eq. (7-54b) is

Pc H . de = 2nrH,p.

For the surface S l' only the first term on the right side of Eq. (7-54b) is nonzero
because no charges are deposited along the wire and, consequently, D = O.

r J. ds = ic = C 1VoW cos wt.Js,
Since the surface S2 passes through the dielectric medium, no conduction current
flows through S2' If the second surface integral were not there, the right side of
Eq. (7-54b) would be zero. This would result in a contradiction. The inclusion
of the displacement-current term by Maxwell eliminates this contradiction. As
we have shown in part (a), iD= ic. Hence we obtain the same result whether
surface S 1 or surface S2 is chosen. Equating the two previous integrals, we find
that

In Section 6-3 the concept of the vector magnetic potential A was introduced
because of the solenoidal nature of B (V . B = 0):

a
V x E = -- (V x A)at

. I B = V x A (T).I (7-55)

If Eq. (7-55) is substituted in the differential form of Faraday's law, Eq. (7-1), we
get

V x ( E + ~~)= O. (7-56)

Since the sum of the two. vector quantities in the parentheses of Eq. (7-56) is curl-
free, it can be expressed as the gradient of a scalar. To be consistent with the defini-
tion of the scalar electric potential V in Eq. (3-43) for electrostatics, ~e write

aA
E +-at = -VV,
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