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7 Time-Varying Fields and Maxwell’s Equations

C in Fig. 7-7. Two typical open surfaces with rim C may be chosen: (1) a planar
disk surface S, or (2) a curved surface S, passing through the dielectric medium.
Symmetry around the wire ensures a constant H, along the contour C. The line
integral on the left side of Eq. (7—54b) is

¢, H- de = 2nrH,
(8

For the surface S;, only the first term on the right side of Eq. (7—54b) is nonzero
because no charges are deposited along the wire and, consequently, D = 0.

- J+ds =i, = C,Vyw cos wt.
1

Since the surface S, passes through the dielectric medium, no conduction current
flows through S,. If the second surface integral were not there, the right side of
Eq. (7-54b) would be zero. This would result in a contradiction. The inclusion
of the displacement-current term by Maxwell eliminates this contradiction. As
we have shown in part (a), i, = ic. Hence we obtain the same result whether
surface §; or surface S, is chosen. Equating the two previous integrals, we find
that

N o
Hy=—"’wcosot (A/m).
2nr == o

Potential Functions

In Section 6-3 the concept of the vector magnetic potential A was introduced
because of the solenoidal nature of B (V* B = 0):

B=VxA (T). (7-55)

If Eq. (7-55) is substituted in the differential form of Faraday’s law, Eq. (7-1), we
get

)
VxE=—— A
x = (Vx A)

V x (E + a—A> =0. (7-56)

or

ot

Since the sum of the two vector quantities in the parentheses of Eq. (7-56) is curl-
free, it can be expressed as the gradient of a scalar. To be consistent with the defini-
tion of the scalar electric potential ¥ in Eq. (3—43) for electrostatics, we write

0A

E+—=-VV,
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