
PIC Application Notes

Page 16 • PIC Application Notes • TechTools

Introduction. This application note covers transmission of asynchronous
serial data using PIC microcontrollers. It presents an example program
in TechTools assembly language that transmits a text string serially via
RS-232 at speeds up to 19,200 bits per second. Hardware examples
demonstrate the use of a popular serial line driver, as well as a method
for using the PIC’s output to directly drive a serial line.

Background. Many PIC applications require sending data to a larger
computer system. The common RS-232 serial port is almost ideal for this
communication. While the PIC lacks the onboard serial communication
hardware available with some more expensive controllers, it can readily
be programmed to add this capability.

A previous application note (#2, Receiving RS-232 Serial Data) covered
the data format and RS-232 signals in some detail. Here are the
highlights:

A byte of serial data is commonly sent as 10 bits: a start bit, eight data

1k

Reset

MAX
232

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

C1+

+10

C1-

C2+

C2-

-10

X2 out

R2 in

Vcc

GND

X1 out

R1 in

R1 out

X1 in

X2 in

R2 out

+5

10 µF

PIC
16C54

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA2

RA3

RTCC

MCLR

Vss

RB0

RB1

RB2

RB3

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

+5

ceramic resonator
w/integral capacitors

RS-232
serial out

10 µF

10 µF

10 µF

10 µF

The PIC's output may be connected
directly to the serial input of the
terminal or PC. Change the program
as marked in listing 1.

RS-232
serial out

1
RA2

+5

3: Sending RS-232 Serial Data

Sending RS-232
Serial Data

PIC Application Notes

TechTools • PIC Application Notes • Page 17

APPS

bits, and a stop bit. The duration of these bits is calculated by dividing the
rate in bits per second (commonly baud) into 1 second. The stop bit can
be stretched to any desired duration.

Under the RS-232 standards, a high (1) is represented by a negative
voltage in the range of -5 to -15 volts. A low (0) is a voltage from +5 to
+15 volts. In addition to connections for data input, output, and ground,
most RS-232 ports include handshaking lines that help devices turn the
flow of data on and off when necessary (for instance, when a printer is
receiving data faster than it can store and process it). Many applications
avoid the use of these hardware signals, instead embedding flow-control
commands in the data stream itself.

A traditional method of sending serial data is to use a parallel-in serial-
out shift register and a precise clock. The start, data, and stop bits are
loaded into the register in parallel, and then shifted out serially with each
tick of the bit-rate clock. You can easily use a software version of this
method in a PIC program. Really, the most difficult part of transmitting an
RS-232-compatible signal from the PIC is achieving the signaling
voltages. However, the hardware example presented here shows that:

• There are devices that generate the RS-232 voltages from a
single-ended 5-volt supply.

• It is possible to use the PIC’s output to directly drive an RS-232
input, if the cable is kept short.

How it works. The PIC program in listing 1 sends a short text string as
a serial data stream whenever the PIC is reset. To reset the PIC, push
and release the reset button shown in the schematic . If you lack
appropriate terminal software for your computer, listing 2 is a BASIC
program that will help get you started. If you use other terminal software
and get “device timeout” errors, try cross-connecting the handshaking
lines as shown in figure 2 below. This has the effect of disabling
handshaking. The program in listing 2 does this in software.

The PIC program starts by setting port RA to output. Serial data will be
transmitted through pin RA.2. The program consists of two major loops,
defined by the labels :again and :xmit. The first loop, :again, initializes the

3: Sending RS-232 Serial Data

PIC Application Notes

Page 18 • PIC Application Notes • TechTools

bit counter, and then gets a byte from the subroutine/table called string.
Once string returns a byte in the w register, the program puts this byte
into xmt_byte. After a start bit is sent by clearing the serial-out pin, :xmit
takes over. It performs the following steps:

• Rotate the transmit byte right (into carry).
• Move the carry bit to serial output.
• Wait one bit time (set by bit_K).
• Decrement the bit counter.
• Is the counter zero?

> No, loop again.
> Yes, exit the loop.

With the :xmit loop finished, the program sets the serial-out pin to send
a stop bit, and checks to see whether it has reached the end of the string.
If not, it goes back to :again to retrieve another byte. If it is done with the
string, the program enters an endless loop.

The hardware portion of the application is fairly straightforward. The PIC
produces logic-level signals that the MAX232 chip converts to accept-
able RS-232 levels, approximately ±10 volts. The MAX232 has onboard
charge-pumps that use the external capacitors to build up the required

RTS
CTS

DSR

DCD

DTR

to PIC circuit
GND

to SERIAL OUTDATA

GND

DB-25
PIN

DB-9
PIN

3 2

4 7
5 8

6 6

8 1

20 4

7 5

Figure 2. Hookups for standard 9- and 28-pin
connectors. Connecting RTS to CTS disables
normal handshaking, which is not used here.

3: Sending RS-232 Serial Data

PIC Application Notes

TechTools • PIC Application Notes • Page 19

APPS

signaling voltages. There are other chips that provide additional fea-
tures, such as additional I/O channels, higher signaling rates, lower
power consumption, and the ability to work without external capacitors.

Modifications. The MAX232 draws more current and costs more (in
single-part quantities) than the PIC it supports. Most of the time, this is
still a bargain compared to adding a bipolarity power supply to a device
just to support RS-232 signaling. In fact, the MAX232 has excess current
capacity that can be used to power other small bipolarity devices, such
as low-power op-amps. Depending on the application, additional voltage
regulation may be required.

If you plan to use the serial port infrequently, consider powering the MAX
chip through one of the PIC’s I/O pins. Your program could turn the MAX
on shortly before it needed to send a serial message, and turn it back off
afterward. This option is especially attractive for uses that require
wringing the most life out of a set of batteries.

A sample MAX232 that we tested drew 15 mA while driving two
simulated serial-port loads. This is well within the PIC’s drive capability.
A further test showed that the MAX232’s output voltages rose to their full
±10-volt levels about 1.5 milliseconds after power was applied to the
chip. If your program switches the MAX232 on and off, program a 1.5-
ms delay between turning the device on and sending the first bit.

In some cases, you may be able to dispense with the serial line driver
altogether. Make the changes marked in listing 1 “for direct connection”
and wire RA.2 directly to the serial receive connection of your terminal or
PC. The changes in the program invert the logic of the serial bits, so that
a 1 is represented by an output of 0 volts and a 0 is a 5-volt output.
According to RS-232, the receiving device should expect voltages of at
least -3 volts for a 1 and +3 volts for a 0. Voltages lying between +3 and
-3 are undefined, meaning they could go either way and still comply with
the standard.

As a practical matter, though, it wouldn’t be smart to let 0 volts be
interpreted as a 0, since this is a serial start bit. Any time the serial input
was at ground potential, the terminal or PC would attempt to receive
incoming serial data. This would cause plenty of false receptions. Serial-

3: Sending RS-232 Serial Data

PIC Application Notes

Page 20 • PIC Application Notes • TechTools

port designers apparently take this into account and set the 0 threshold
somewhere above ground.

That’s why this cheap trick works. Don’t count on it to provide full RS-232
performance, especially when it comes to sending data rapidly over long
cables. Keep cables short and you shouldn’t have any problems (19,200
baud seems to work error-free through 6 feet of twisted pair).

If your application will have access to the handshaking pins, you may be
able to steal enough power from them to eliminate batteries entirely.
According to the RS-232 specifications, all signals must be capable of
operating into a 3000-ohm load. Since many computers use ±12 volts for
their RS-232 signals, each line should be capable of delivering 4 mA. In
practice, most can provide more, up to perhaps 15 mA. The only problem
with exploiting this free power is that the software running on the PC or
terminal must be written or modified to keep the handshaking lines in the
required state.

One final hardware note: Although timing isn’t overly critical for transmit-
ting serial data, resistor/capacitor timing circuits are inadequate. The
PIC’s RC clock is specified to fairly loose tolerances (up to ±28 percent)
from one unit to another. The values of common resistors and capacitors
can vary substantially from their marked values, and can change with
temperature and humidity. Always use a ceramic resonator or crystal in
applications involving serial communication.

Program listing. This program may be downloaded from our Internet ftp
site at ftp.tech-tools.com. The ftp site may be accessed directly or
through our web site at http://www.tech-tools.com.

3: Sending RS-232 Serial Data

PIC Application Notes

TechTools • PIC Application Notes • Page 21

APPSClock
Serial Bit Rate (bit time)

Frequency
600 1200 2400 4800 9600 19,200

1 MHz 206 102 50 24 Ñ Ñ Ñ
2 MHz Ñ 206 102 50 24 Ñ Ñ
4 MHz Ñ Ñ 206 102 50 24 Ñ
8 MHz Ñ Ñ Ñ 206 102 50 24

Other combinations of clock speed and bit rate can be supported by changing the bit_delay and

start_delay subroutines. The required bit delay is 1
bitÊrate

 . For example, at 1200 baud the bit delay

is 1
1200

 = 833µs. The start delay is half of the bit delay; 416µs for the 1200-baud example.

Calculate the time delay of a subroutine by adding up its instruction cycles and multiplying by
4

clockÊspeed
 . At 2 MHz, the time per instruction cycle is 4

2 ,000 ,000
 = 2µs.

300
(3.33 ms) (1.66 ms) (833 µs) (417 µs) (208 µs) (104 µs) (52 µs)

��������	�
���
����
���
��������	�������������������������
�����

�����

�������� !�" #
$%$

; This program transmits a string of serial data. The baud rate is determined
; by the value of the constant bit_K and the clock speed of the PIC. See the
; table in the application note (above) for values of bit_K. For example, with
; the clock running at 4 MHz and a desired transmitting rate of 4800 baud,
; make bit_K 50.

; >>> Remember to change device info if programming a different PIC! <<<
; Do not use RC devices. Their clock speed is not sufficiently accurate
; or stable enough for serial communication.

device pic16c54,xt_osc,wdt_off,protect_off
reset begin

bit_K = 24 ;24 for 19,200-baud operation @ 8 MHz
serial_out= ra.2

 org 8 ;Start of available RAM

delay_cntr ds 1 ;Counter for serial delay routines
bit_cntr ds 1 ;Number of transmitted bits
msg_cntr ds 1 ;Offset in string
xmt_byte ds 1 ;The transmitted byte

 org 0 ;Start of code space (ROM)

begin mov !ra, #00000000b ;Set port to output.

3: Sending RS-232 Serial Data

PIC Application Notes

Page 22 • PIC Application Notes • TechTools

���#����������	��������&�
��
�'������
��&����� (

10 CLS
15 REM Substitute desired baud rate for 19200 in the line below.
20 OPEN “com1:19200,N,8,1,CD0,CS0,DS0,OP0” FOR INPUT AS #1
30 IF NOT EOF(1) THEN GOSUB 200
40 GOTO 30
200 Serial$ = INPUT$(LOC(1), #1)
210 PRINT Serial$;
220 RETURN

3: Sending RS-232 Serial Data

mov msg_cntr, #0 ; Message string has ten
; characters 0 through 9.

:again mov bit_cntr,#8 ;Eight bits in a byte.
mov w,msg_cntr ;Point to position in the string.
call string ;Get the next character from string.
mov xmt_byte,w ;Put character into the transmit byte.
clrb serial_out ;Change to setb serial_out for direct connection.
call bit_delay ;Start bit.

:xmit rr xmt_byte ;Rotate right moves data bits into
;carry, starting with bit 0.

movb serial_out,c ;Change to movb serial_out,/c for
;direct connection.

call bit_delay ;Data bit.
djnz bit_cntr,:xmit ;Not eight bits yet? Send next data bit
setb serial_out ;Change to clrb serial_out

;for direct connection
call bit_delay ;Stop bit.
inc msg_cntr ;Add one to the string pointer.
cjbe msg_cntr,#9,:again ;More characters to send? Go to the top

:endless jmp :endless ;Endless loop.
;Reset controller to run program.

; To change the baud rate, substitute a new value for bit_K at the beginning of
; this program.

bit_delay mov delay_cntr,#bit_K
:loop nop

djnz delay_cntr, :loop
ret

string jmp pc+w ;String consisting of "TechTools"
;followed by a linefeed.

retw 'T','e','c','h','T','o','o','l','s',10

