MC68HC11 Laboratory Manual

N. Natarajan

Department of Electrical and Computer Engineering
University of Michigan-Dearborn
4901 Evergreen Road
Dearborn-48128

nnarasim@umich.edu

Contents

1 Introduction to HC11
1.1 Objective
1.2 Tasks . . . o o
1.2.1 Getting started with HC11
1.2.2 Looking at memory
1.2.3 Modifying memory
1.2.4 Writing and entering your first program: Using MM
1.2.5 Running your first command L.
1.2.6 Entering your program: Using ASM
1.2.7 Entering your program: Using assembler

2 Introduction to Looping

2.1 Objective
2.2 Simple Input/Output
2.2.1 The function OUTA
2.2.2 The function OUTIBYT

2.3 Branching oo
2.4 Looping
241 Counting loops oo
2.4.2 One, two! One, two! And through and through ... Marching
through memory

2.5 Other Conditional Branches
2.5.1 Signed and unsigned numbers
2.5.2 compare and branch instructions: Unsigned

2.5.3 compare and branch instructions: Signed
2.5.4 An example: HEX2BCD

3 Functions and bit manipulations
3.1 Objective
3.2 What youshoulddo
3.3 Stringoutputso

0 I 1 1

10
10
11
13

15
15
15
16
16
17
18
18

20
23
23
24
24
25

CONTENTS

3.4 Writing your first functiono 32

3.4.1 On random sequences 36
3.5 Your second functiono 36

3.5.1 Test your function 39
3.6 Setting bits 40
3.7 Clearing bits 41
3.8 Toggling bits 42
3.9 Testing bits 44
3.10 Hardware Interfacing 45

3.10.1 PORTA at location $1000 45

3.10.2 Controlling the LED 48

3.10.3 Reading an external switch 48
Tables 49
4.1 Objective 49
4.2 What youshoulddo 49
4.3 Tables 49
4.4 Settingupatable.o 49
4.5 Working with tables 50

4.5.1 Tablelookup 50

4.5.2 Input with validation 54

4.5.3 Translations using tables 57
Timing using Polling 63
5.1 Objective 63
5.2 Getting startedo 63
53 Timing 63

5.3.1 Slowingitdown, 65
Interrupt Processing 67
6.1 Objective 67
6.2 Background 67
6.3 Interrupts 68
6.4 The Real time interrupto 71

6.4.1 Exercises. 73
6.5 The output compare interrupt 74
Signal Generation 77
7.1 Objective 7
7.2 Backgroundo 7
7.3 Variable frequency signal generator 78
7.4 500 Hz tone generator 78

CONTENTS 5

7.5 Variable frequency generator 80
7.6 Exercises 82
8 Analog to Digital Conversion 83
8.1 Objective 83
8.2 Background oo 83
8.3 Electrical Connections 84
8.4 Decisions, decisions 84
8.4.1 Multiplexing o 84
84.2 Scanning 85

8.5 Process of taking a measurement 85
8.5.1 Turning on (powering up) the convetor 85
8.5.2 Initiating a conversion L. 85
8.5.3 Making sure you have valid data. 86

86 Atrialdryrun 86
8.7 A simple digital voltmeter 87

CONTENTS

Chapter 1

Introduction to HC11

1.1 Objective

To become familiar with HC11 and using BUFFALO utilities, interacting using
the terminal program, transferring files, editing-assembling-loading programs and
executing them.

1.2 Tasks

1.2.1 Getting started with HC11
1. Disconnect power from the 68HC11

2. Connect 68HC11 to your computer using the serial cable that came with the
machine.

3. Start the terminal program Hyperterm. The program is already configured
to communicate with the 68HC11.

4. Power up 68HC11

You should see the following prompt

BUFFALO 2.5 (ext) - Bit User Fast Friendly Aid to Logical Operation
>

Type h (for help) and press the enter key. You should see the following help screen

ASM [<addr>] Line assembler/disassembler.
/ Do same address.
CTRL-J Do next address.

8 CHAPTER 1. INTRODUCTION TO HC11

CTRL-A Quit.
BF <addr1> <addr2> [<data>] Block fill.
BR [-][<addr>] Set up breakpoint table.

1.2.2 Looking at memory

To see what is stored in the HC11 memory, we use the memory dump command.
The instruction for dumping memory is MD. Let us look at what is present in
locations EO00 to E3FF. At the prompt, enter the command MD E000 E3FF. You
should see:

>MD EOOO EO3F

EOOO CE 10 OA 1F 00 01 03 7E B6 00 86 93 B7 10 39 86 9
E010 00 B7 10 24 8E 00 68 BD E3 40 CE 00 4A DF A7 86 $ h @ J
E020 DO 97 A6 CC 3F 0D DD 69 BD E1 9A 7F 00 A9 7C 00 7 1

E030 A9 7F 00 AB B6 10 3C 84 20 27 35 86 03 B7 98 00 < ’5

>

Each line of output consists of three parts. First there is the memory address,
for example E020. This is followed by 16 bytes of data. These are contents
of 16 locations starting from the address. For example, in the above example,
memory location E020 contains DO, location E021 contains 97 etc. Recall that all
numbers are in hex. After the 16 bytes come 16 characters. Each of the bytes is
interpreted as an ASCII code and the character that the code represents is shown.
Non printable and non-ascii characters are shown as a space.

Exercise

1. Look up the ascii code for the letter J. Can you locate it in the memory
dump shown above?

2. Determine the contents of the locations FFDO to FFFF. Write down the con-
tents in your lab notebook. You will need these values later in the course.

1.2.3 Modifying memory

Now that you know what is in the memory, let us try to modify the contents of
the memory. Let us store the following values in locations starting from C100: B6,
DO, 00, BB. To modify memory, we use Memory modify command, MM. When you

1.2. TASKS 9

modify the memory, the command will first echo the value already in memory. If
you don’t want to change it, press the space bar, command will move on to the
next memory location. If you want to change the value, just type the value (in
HEX). If you make a mistake, do not press the backspace key. Continue
typing. MM will only look at the last two characters you typed. So if you type
AB872B, you have in effect typed 2B. Once you have entered the correct value,
press the space bar. When you are all done, press the enter key. Here is a quick
list to remind you:

1. To leave memory unaltered but to move to next location, press SPACE bar

2. To modify memory and then move to next location, enter the data and then
press the SPACE bar

3. When entering the value, only the last two characters are used. So if you
make a mistake continue typing

4. When done, press the enter key

The following shows the interaction for entering the four values. Since MM echoes
the previous values stored in memory, you may see different numbers:

>MM C100
C100 A7 B6 BB DO C2 00 32 BB
>

After every memory modify command get into the habit of running the memory
dump command to make sure that the memory was modified the way you wanted.

Exercise
1. Try modifying memory at location E000. What happens when you do it?

2. Modify the memory at three locations starting from D000 to the following
values 10 32 A8 and make sure that the changed did take place.

3. Turn the power to HC11 (not the PC!) off and then on again. What hap-
pened to the changes you made to locations DO00 to D0027 Why?

4. Look at memory locations E000 to EOOF. Did any of them change when you
cycled the power?

10 CHAPTER 1. INTRODUCTION TO HC11

1.2.4 Writing and entering your first program: Using MM

Let us write a short program that will add three numbers stored in locations D000,
D001 and D002. This will be done in five steps

1. First we will load the register A with the value stored in location DO0O
2. Next we will add to the register A the value stored in location D001
3. Next we will add to the register A the value stored in location D002
4. Next we will store the value in the register A in location D003

5. We will return control back to BUFFALO.

We consult the little pink book and find that the command to load a value into
register A is called LDAA. Since we want to load from memory, we need the EXT!
mode of the command. The code for the command, commonly known as the
operation code, or more simply OPCODE;, is B6. So our first instruction is B6
DO 00. We say that the instruction is LDAA DO000. Similarly, we find that
the second instruction is BB D0 01 which corresponds to ADDA D001 The
command for storing data is called STAA and the OPCODE is B7. The instruction
to return control back to BUFFALO is 3F and is called SWI. Thus the entire
program is:

B6 D0 00 BB DO 01 BB DO 02 B7 DO 03 3F

Now that you have written the program, you have to load it into HC11 memory.
You do that using the memory modify command. Before you can do that, you
have to decide where you want to store the program. Check with your TA to see if
he has a preferred location?. For now, we will use the locations starting at C100.
So type the command MM C100 and enter your program, one byte at a time.

1.2.5 Running your first command

First modify the locations DO00-DO0f to values you can easily recognize (but not
all zeros). Assuming that you stored the program starting at location C100, you
run the program by using the call command

L At this stage other modes will not make sense. You will soon learn about the other modes

2You can pretty much enter your program anywhere you have RAM. However, to make it
eagy for the TA when he goes from one student to the next, each TA may state certain standard
locations

1.2. TASKS 11

call C100

Note you can abbreviate any command by entering enough characters to identify
it. Since no other command starts with the letter ¢, you could also have typed c
€100%. When the control is returned to BUFFALO, it prints the contents of all
the registers and you should see something like:

>CALL C100
P-C10C Y-AAAA X-AAAA A-EA B-AA C-D8 S-004A
>

Do a memory dump of locations DO0O0-DOOF. You should see something like:

>md DOOO DOOf
DO0OO 10 32 A8 EA FF FF FF FF FF FF FF FF FF FF FF FF 2
>

Exercises

1. Modify the values in locations DO00-DO0f and run your program. Write
down the values in the locations DO00-D003 and the value in register A,
after you run the program.

2. Repeat the above 5 times and explain your results.

1.2.6 Entering your program: Using ASM

We will reenter your program, except we will store it at a different location.
Enter the program starting at address C200, using the asm command. When you
enter the ASM command, BUFFALO will display instruction currently stored in
memory (or a question mark if it is not a valid instruction). You can press enter
if you want to leave memory unchanged or type the command and then press the
enter key. On power-up, the BUFFALO performs a memory check and fills all
of RAM with FF. FF happens to be the code for STX. So ASM command will
often display STX $FFFF*. Here is how I entered the program at location C200.
What I typed is shown in boldface:

3An alternative to call is the go command, G. There is no difference between them if your
program ends with SWI. However, if your code ends with an RTS, you have to use the call
command.

4BUFFALO expects all its data to be entered in HEX. So you do NOT type the $ in front of
numbers to indicate that the number is entered using HEX representation. However, BUFFALO
adds the $ in front of the numbers written using HEX representation

12

>ASM C200
€200

€203

C206

C209

c20C

C20D

STX $FFFF
>LDAA D000
B6 DO 00

STX $FFFF
>ADDA D001
BB DO 01

STX $FFFF
>ADDA D002
BB DO 02

STX $FFFF
>STAA D003
B7 DO 03

STX $FFFF
>SWI

3F

STX $FFFF

> CTRL-A

CHAPTER 1.

INTRODUCTION TO HC11

Note that to get out of the ASM command you need to type the control-A
character.

Exerecises

1. Enter the program shown above and verify that the program is entered

3.

correctly.

Search through the memory starting at location $E000 to find the string
User Fast Friend. On my HCI11 it is at location E610. Yours may be
different. Locate the string and find out where the string is stored, i.e. the
address of the first character. Modify the value E610 in what follows with
the address you found.

Enter the following program starting at location C300 and run it. What is
the result of running your code?

LDX #E610

JSR FFC7
SWI

(a) Modify the above program by changing E610 to D200.

1.2. TASKS 13

(b) Find out the ascii codes for the letters in the phrase THIS CLASS IS
FUN. To get you started, here are some codes: code for "T" is 54, code
for "H’ is 48 and code for I is 49.

(c) Enter the ASCII codes starting from location D200. After you enter
the last ASCII code, enter the special code 04.

(d) Run the program and write down what output you get.

(e) To see why you need the special code, do memory modify and change
it to OA. Rerun the program and write down what you observe.

1.2.7 Entering your program: Using assembler

In this method, we will do all the work on the PC and eventually transfer the
program to HC11. Start any text editor. DO NOT USE A WORDPRO-
CESSOR such as Word, Wordpad etc. The best editor I am aware of the Pro-
grammer’s file editor (PFE). This editor is part of the lab package that you can
download from the web. Create a directory/folder where you will do all your work.
In that directory, copy all the files from the lab pack.

Using the editor, create a file called PROG1.ASM and enter the following®:

*Name: your name goes here
*Unigname: Your unique name goes here
*Class: ECE 373 (or your course number)
*Term: The term
*Date: Date you started the code
ORG $CO00 *this determines where the code will be stored
LDAA $D000
ADDA $D001
ADDA $D002
STAA $D003
SWI

Save your file. Start a MSDOS. Change directory to where your files are stored.
Execute the command

ASM PROG1

If there are no errors, you should see two new files, PROG1.LST and PROG1.S19.
The first file for humans to read and is often called the LST file and the second
is for the HC11 and is called the S19 file.

Go back to the BUFFALO prompt and type the command

5By tradition, assembly language programs are written in UPPERCASE letters, except if
you are writing code for Unix and its derivatives.

14 CHAPTER 1. INTRODUCTION TO HC11

LOAD T

In Hyperterm, use the ASCII file transfer command (use the Transfer menu item
to get to it) to transfer the PROG1.S19 file. When the transfer is complete, you
should see the program in locations starting from CO000.

Exercises:

1. Write the above code, assemble it (i.e. create the S19 file), transfer the S19
file to HC11 and run the program. Verify that the program works correctly.

2. Copy the file LAB1.ASM. The file has three errors in it. Assemble it and
look at the error messages. Fix the errors and submit a corrected version.

Chapter 2

Introduction to Looping

2.1 Objective

To become familiar with elementary loops and simple input/outputs functions.

2.2 Simple Input/Output

One of the basic functionality provided by any operating system is input/output
routines. BUFFALO provides several useful functions for performing input /output.
In this lab, we will look at two output functions provided by BUFFALOQO. Unlike in
high level languages, functions in machine language are known by their addresses.
The two functions we will be using are in ROM at locations $FFB8 and $FFBB'.
Rather than use these hard to remember and hard to recognize numbers, it is
customary to give them meaningful names. Unless you have a good reason to do
otherwise, it is best to use the name suggested by the vendor, in this case Mo-
torola. The ’official’ names for these functions are OUTA and OUT1BYT respectively.
In assembly language, we make the connection between a name (technically known
as a label) and a value using the EQU command as shown

OUTA EQU $FFBS
OUT1BYT EQU $FFBB

NOTE: Labels should be written starting from column 1. If a line does not have
a label, it should start with a space or a tab or a comment character.

'We will indicate HEX values with the prefix $. However, data that you would be entering
in BUFFALO, as part of memory modify or register modify will be shown without the prefix $
although it will be understood that the numbers are written in HEX.

15

16 CHAPTER 2. INTRODUCTION TO LOOPING

2.2.1 The function 0UTA

The function OUTA will transmit whatever is in register A over the serial com-
munication line that is connected to the PC. What the PC does with this value
depends on the terminal program that is used to communicate with the HC11.
Under normal circumstances, the terminal program will interpret the value as an
ASCII code and display the corresponding character on the screen.

Exercise: Power up HC11 and at the BUFFALO prompt try the following and
write down what you see.

1. Issue the command RM (for register modify) and press the space bar till
you see the A register. Enter the value 31 and press enter as shown below:

>rm
P-AAAA Y-AAAA X-AAAA A-AA B-AA C-DO S-004A
P-AAAA

Y-AAAA

X-AAAA

A-AA 31

>

Now execute the command
CALL FFBS8

2. Repeat with the A register modified with the following values: 32, 33,
34, 21, 22, 23, 24, 25, 41, 42 43 44

If you are using the simulator, turn on the log feature (by pressing both the shift
keys). If you are working with a real HC11, you can copy and paste the contents
of the terminal screen.

2.2.2 The function OUT1BYT

This is a more involved output function. To start with, the value to be printed
must be in memory. If the value is in a register you will have to store it in
memory first. Next, the value in the X register should be the address where the
value is stored. Thus this function should be told 'where” and not 'what’. When
you call this function, the function will send two characters to the PC. If the
terminal program interprets these two characters as ASCII codes and displays
the corresponding two characters, then the display would be the value written in
HEX. In addition, the function will increment the value in the X register. This is
useful when displaying a series of memory locations.

2.3. BRANCHING 17

Exercise:

1. Using the MM command (memory modify) enter the following values in
memory locations D000, D001, ---: 30 31 32 33 41 42 43 44. Verify the
values using the memory dump, MD, command.

2. Using RM, the register modify command, change the value in the X register
to DOOO

3. Execute the command CALL FFBB and write down what the output was and
also the value in the X register after the command is executed.

4. Repeat the the command CALL FFBB and write down the output and the
new value in the X register.

5. Repeat the last part until you have performed 7 calls to $FFBB.

2.3 Branching

Conditional branching in HC11 is controlled by the state of one or more hardware
flags. The state of a flag depends on the most recently executed instruction that
affects the flag. Thus, if your branching depends on the result of some instruction,
then it is your responsibility to make sure that none of the instructions between
the instruction you are interested in and the branching instruction affects the
flags that control the branching instruction. Thus, it is a good idea to follow the
instruction that sets the flag by the branching instruction. In this lab, we will use
the following conditional branch instructions:

BEQ Branch if the Z flag is set
BNE Branch if the Z flag is not set

Now, the Z flag is set after most instructions if the result of the instruction is a
zero; or else it is cleared, i.e. not set. The two most important instructions that
are often used to set/clear the flag are

CMP Perform a subtraction and discard the answer. However, set the flags.
TST Same as CMP except subtract the number zero

Thus, after the CMP command, the Z flag would be set if the two values that are
compared are equal. Similarly, the TST command will compare a value (memory
or register) with zero and set the Z flag if the value is zero.

18 CHAPTER 2. INTRODUCTION TO LOOPING

Exercise:

1. Using the HC11 reference book, identify 5 instructions that do not affect
the C flag, but affects some other flag.

2. Using the HC11 reference book, can you identify any instruction that does
not affect the V flag, but affects some other flag?

3. Using the HC11 reference book, identify 5 instructions that always clears
the C flag.

4. Using the HC11 reference book, identify an instruction that always sets the
C flag.

2.4 Looping

2.4.1 Counting loops

This is by far the simplest and most used loop structure. In a counting loop, we
perform a specific operation a given number of times. A counter controls how
many times the loop is executed. The counter could be stored in memory or kept
in a register. If it is kept in a register, it is your responsibility to make sure that
the register is not inadvertently changed either by your code or by some third
party function that you call. If you decide to use a register, your best bet is to
use either the B register or Y register. The structure of the loop is as follows:

1: Initialize the counter to the number of times the loop is to be performed
2: Perform any other initializations

3: Test if the counter is zero. If so quit the loop

4: Perform the desired task

5: Perform any re-initializations

6: Decrement the counter

7: Go back to 3

8: Come here when you quit the loop

Note that there are two places where the code jumps to. One to (3) and the other
to (8). When writing the code in assembly language, we would need two labels.
In the code that follows, I have used the labels FOO and BAR.

2.4. LOOPING 19

Exercises:

1. Assemble the following code in your PC, transfer the S19 file to HC11, run
the program and write down the output of the program.

;Name :
;email:
;date:
OUTA EQU $FFBS
ORG $C100
LDAB #$9 ; USING REGISTER B AS A COUNTER
LDAA #$31 ; OTHER INITIALIZATION
FOO TSTB ; SUBTRACT ZERO FROM B
BEQ BAR ; QUIT IF THE Z FLAG IS SET, I.E. B=0
JSR OUTA ; DO THE TASK
INCA ; RE-INITIALIZE
DECB ; DECREMENT THE COUNTER
BRA FOO ; GO BACK
BAR
SWI

2. Modify the above program so that the program prints the upper case letters
A to Z. Clearly indicate the changes you made.

3. The following function is equivalent to the function shown above?.
; continued from the previous function
ORG $C200

LDAB #$9 ; USING REGISTER B AS A COUNTER
LDAA #$31 ; OTHER INITIALIZATION

JUBJUB
JSR OUTA ; DO THE TASK
INCA ; RE-INITIALIZE
DECB ; DECREMENT THE COUNTER
BNE JUBJUB ; GO BACK

2You can have as many functions as you want in the same file. Make sure that when you
change the ORG, the functions do not overlap. You can determine this by looking at the LST
file

20 CHAPTER 2. INTRODUCTION TO LOOPING

SWI

Verify that CALL C100 and CALL C200 produces the same output. Explain
why this is so, and how and why the loop terminates.

2.4.2 One, two! One, two! And through and through ...
Marching through memory

Often loops are combined with marching through memory and operating on con-
secutive memory location. In this case, the X (and/or Y) register is initialized
to a starting memory address. Inside the loop, memory is accessed using IND,X
addressing mode. This operates on memory whose address is computed using the
value in X register. At the bottom of the loop, X is incremented, so that next
time around the loop, the operation is performed on the next memory location?.
The following program shows prints using OUTA the values stored in 9 consecu-
tive locations starting from location $D000. Note we are using FCB which is the
assembly language equivalent of memory modify.

ORG $C300

LDAB #$09
LDX #$D000O *Don’t forget the #

VORPAL TSTB
BEQ SWORD
LDAA 0,X
JSR OUTA
INX
DECB

BRA VORPAL

SWORD SWI

; FOLLOWING SAME AS MM DOOO FOLLOWED BY: 55 6F 66 4D 2D 44 62 72 6E

3In some cases the memory has to be accessed in the reverse order. In this case, X starts at
the end, and at the bottom of the loop, X is decremented.

2.4. LOOPING 21

ORG $D000
FCB $55, $6F, $66, $4D, $2D, $44, $62, $72, $6E

Run the above program using CALL C300%. Modify the above program as shown
below and explain what the program does. Do you see why we do the DEX before
we access memory?

ORG $C400
LDAB #8$09
LDX #$D000
ABX

SNICKER TSTB
BEQ SNACK
DEX
LDAA 0,X
JSR OUTA
DECB

BRA SNICKER
SNACK SWI

ORG $D000
FCB $55, $6F, $66, $4D, $2D, $44, $62, $72, $6E

Now for some other useful examples. Explain what each of them does. Run
the programs and using memory dump, verify that your explanation is correct.
Each of the functions start with an ORG command.

ORG $C500
LDAB #$10
LDX #3D000

CALLOOH TSTB
BEQ CALLAY

4Don’t forget to assemble it and then transfer the S19 file to the HC11!

22 CHAPTER 2. INTRODUCTION TO LOOPING

LDAA 0,X
ADDA $10,X
STAA $20,X

INX
DECB
BRA CALLOOH
CALLAY
SWI

ORG $D000

FCB $55, $6F, $66, $4D, $44, $62, $72, $6E
FCB $41, $42, $43, $44, $45, $46, $47, $48
FCB 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

; NOTE: YOU CAN ENTER NUMBERS EITHER IN DECIMAL OR HEX!
; AFTER YOU RUN THE PROGRAM, DO

; MD DOOO DO2F

; TO SEE WHAT THE PROGRAM DOES

The following program prints the sixteen values stored in the consecutive location
starting from $D020. To make the output more user friendly, each number is
followed by a comma and a space.

290999999999 9999939999333 333333333IIIIIIDIDIIIID

ORG $C600
LDAA #$0A
JSR OUTA
JSR OUTA
LDAB #3$10
LDX #$D020
KINGS TSTB

BEQ CABBAGES
JSR OUT1BYT
LDAA #$2C
JSR OUTA
LDAA #3$20

JSR OUTA

2.5. OTHER CONDITIONAL BRANCHES 23

DECB

BRA KINGS
CABBAGES

LDAA #$0A

JSR 0UTA

JSR OUTA

SWI

2.5 Other Conditional Branches

2.5.1 Signed and unsigned numbers

So far we have only considered comparing two values and branching if they are
equal (BEQ) or not equal (BNE). Designers of HC11 have provided several other
branches. When comparing two numbers, it is important to distinguish between
signed and unsigned quantities. Note that the internal hardware does not deal
with numbers per se bit with binary patterns which are interpreted as numbers
Conversely, numbers are represented by bit patterns and it up to you to chose the
appropriate interpretation. For example, using binary representations, an 8-bit
quantity can represent any number from 0 to 28 — 1 or 0 to 255. This is the
unsigned representation. What happens if we use an 8-bit counter and starting
at zero and incrementing it by one? The value will go from one to two to three
etc. all the way to 255 and then roll over to zero and start all over again. This
is the unsigned interpretation. Now suppose you start at zero and decrement
by one. The value will go from zero to 255 to 254 etc. But starting from zero
decrementing by one you get -1. Thus 255 really represents -1. This is the signed
interpretation. ® This dual interpretation is quite natural and does not pose any
problems except when performing comparisons. In the signed interpretations,
numbers 0 to 127 are non-negative, and numbers 128 to 255 are negative, with
128 representing -128, 129 representing -127 ... and 255 representing -1. Note
that the negative numbers come after the positive numbers thus when comparing
two numbers of the opposite sign, the sense of inequality are reversed. Keeping
this in mind, HC11 hardware designers have two sets of branch conditions, one
for signed numbers (where special attention is given if the two numbers that are

5This dual interpretation is something I use often. It is easy to think of the clock, and say the
minute setting. Starting at zero and incrementing by one, I get one, two, --- to 59 and back to
zero. When I set the alarm on this clock I cannot go back, only forward. So, if I want to decrease
the minute value by 5, I have to advance it by 55. Thus adding 55 is same as subtracting 5, or
in terms of arithmetic 55 is has the dual interpretation of -5.

24 CHAPTER 2. INTRODUCTION TO LOOPING

compared are of opposite sign) and one for unsigned comparison where no special
cases need be considered.

2.5.2 compare and branch instructions: Unsigned

The following is based on the section named Branches in the M68HC11E Series
Programming Reference Guide commonly referred to as the little pink book. In
each case, the instruction compares a value in register r with a value in memory

M.

Branch to LOCif A > MEM

CMPA MEM
BHI LOC *Branch if HIgher

Branch to LOCif A <= MEM

CMPA MEM
BLS LOC *Branch if Lower or Same

Branch to LOCif A >= MEM

CMPA MEM
BHS LOC *Branch if Higher or Same

Branch to LOCIf A < MEM

CMPA MEM
BLO LOC *Branch if Lower

2.5.3 compare and branch instructions: Signed
Branch to LOCif A > MEM

CMPA MEM
BGT LOC *Branch if Greater Than

Branch to LOCif A <= MEM

CMPA MEM
BLE LOC *Branch if Lesser or Equal

2.5. OTHER CONDITIONAL BRANCHES 25

Branch to LOCif A >= MEM

CMPA MEM

BGE LOC *Branch if Greater or Equal
Branch to LOCif A < MEM

CMPA MEM
BLT LOC *Branch if Less Than

2.5.4 An example: HEX2BCD

Consider the problem of converting a number represented in binary to its equiv-
alent representation in BCD. Without going into too much detail, the rule for
numbers between 0 and 99 (two digit numbers) is as follows:

1. For numbers between 0 and 9 (inclusive), no change.
2. For numbers between 10 and 19 (inclusive), add 6.

3. For numbers between 20 and 29 (inclusive), add 12.

5. For numbers between 90 and 99 (inclusive), add 54.

Without using Loops

Here is a program that takes the value in location $D000, convert it to BCD and
store it in location $D001. First a program that does not use loops. Before running
the program use MM to change the value in location $D000. Recall MM requires
you to enter the value in HEX. So make sure the value you enter is between 00
and 63.

333335555 5553333355555 555 START OF HEX2BCD ;5555555555555

; THIS PROGRAM TAKES THE VALUE IN LOCATION $DO0OO AND
; CONVERTS IT TO ITS BCD REPRESENTATION AND STORES THE
; RESULT IN LOCATION $D001

; THE NUMBER IN LOCATION $D0O00O SHOULD BE BETWEEN O AND 99 ($63)
; NUMBERS BIGGER THAN 99 ARE IGNORED AND LEFT UNCHANGED.

; THE PROGRAM ADDS MULTIPLES OF 6 AS APPROPRIATE

26

b

b

CHAPTER 2. INTRODUCTION TO LOOPING

; IT USES CODE REUSE IN THIS SIMPLE FORM. TO ADD 54, IT
IT ADDS 6 AND THEN FALLS DOWN TO THE CASE OF ADDING 48.

; TO ADD 48, IT ADDS 6 AND THEN FALLS DOWN TO ADDING 42, ETC.

ORG $C000

LDAA $D000

CMPA #10
BLO DONE

CMPA #20
BLO ADD6

CMPA #30
BLO ADD12

CMPA #40
BLO ADD18

CMPA #50
BLO ADD24

CMPA #60
BLO ADD30

CMPA #70
BLO ADD36

CMPA #80
BLO ADD42

CMPA #90
BLO ADD48

CMPA #100
BLO ADD54

BRA DONE *NUMBER TOO BIG. LEAVE IT ALONE

2.5. OTHER CONDITIONAL BRANCHES 27

ADD54

ADDA #6
ADD48

ADDA #6
ADD42

ADDA #6
ADD36

ADDA #6
ADD30

ADDA #6
ADD24

ADDA #6
ADD18

ADDA #6
ADD12

ADDA #6
ADD6

ADDA #6

DONE
STAA $D001

; NOW PRINT THE VALUES
LDX #$D00O0
JSR OUT1BSP *SAME AS QOUT1BYT EXCEPT PRINTS A SPACE AFTER THE NUMBER
JSR OUT1BYT

SWI
333335555555533355555555 5 END OF HEX2BCD 5555555535555

Here are some sample runs. Note that the value $23 is converted to $35.the value
$29 is converted to $41.

>MM DOOO
D000 FF 23
>C C000

23 35
P-C04B Y-AAAA X-D002 A-20 B-AA C-D9 S-004A

28 CHAPTER 2. INTRODUCTION TO LOOPING

>MM DOOO
D000 23 29

>C C000

29 41

P-C04B Y-AAAA X-D002 A-20 B-AA C-D9 S-004A
>

Using Loops

Here is a version using loops. We first copy A to B. Then in a loop check if B is
greater than or equal to 10. If so, we subtract 10 from B and add 6 to A. If not,
we are done.

333353333y START OF HEX2BCD ;5555555555555

; THIS PROGRAM TAKES THE VALUE IN LOCATION $DO0OO AND
; CONVERTS IT TO ITS BCD REPRESENTATION AND STORES THE
; RESULT IN LOCATION $D0O01

; THE NUMBER IN LOCATION $DO0OO SHOULD BE BETWEEN O AND 99 ($63)
: NUMBERS BIGGER THAN 99 ARE IGNORED AND LEFT UNCHANGED.

; THE PROGRAM USES LOOPS AND REPEATED SUBTRACTION

OUT1BYT EQU $FFBB
OUT1BSP EQU $FFBE

ORG $C000

LDAA $D000

TAB *COPY A TO B
LT

CMPB #10 *IS B < 10

BLO DONE *IF SO WE ARE DONE

SUBB #10 *B <- B-10
ADDA #6 *A <- A+6
BRA LT

2.5. OTHER CONDITIONAL BRANCHES 29

DONE
STAA $D001

LDX #$D000
JSR OUT1BSP *SAME AS OUT1BYT EXCEPT PRINTS A SPACE AFTER THE NUMBER
JSR OUT1BYT

SWI

s355555555555555335555555 END OF HEX2BCD ;5555555555555

3999923399933

30

CHAPTER 2. INTRODUCTION TO LOOPING

Chapter 3

Functions and bit manipulations

3.1 Objective

To become familiar with bit level operations and writing functions. This lab also
illustrates the use of random numbers for testing functions. Bit level operations
are used to control light emitting diodes connected to PORTA as well as for
monitoring external circuitry.

3.2 What you should do

You will be writing several functions in this laboratory exercise. You should
have only one file and you should add the new function at the end of your older
functions. Also, you will be adding items to the data section. You should not
delete earlier data items. Your main code will be changing. You should insert
your new main code before the older one, so that the most recent main code will
start immediately after the ORG statement. Try not to delete any code from your
file.

3.3 String outputs

In the last lab, we saw how to write a single byte as an ascii character. To write
a string, it is tedious to load A with one character at a time and then calling
OUTA each time. A better approach is to put all the characters in consecutive
memory locations and print them all in a loop. To do this, we need two pieces
of information, where to start and where to end. The common approach to such
situation is to specify where to start and use a special value, known as sentinel,
to indicate the end. Some of you may have used special values such as zero, one,
or 9999. It is entirely up to the programmer, but for character strings, the three

31

32 CHAPTER 3. FUNCTIONS AND BIT MANIPULATIONS

most often used sentinels are zero (also known as ASCII-Z string), 26 (also known
as CONTROL-Z string, or old DOS string), 4 (EOT string).

The programmers of BUFFALO use EOT string and you have one of two
choices: rewrite BUFFALO routine and use some other sentinel, or use 4 as the
sentinel and remember to place it after each string. The rest of the lab assumes
that you will use the EOT string. Two functions that BUFFALO provides for
printing strings are OUTSTRG at location $FFC7 and OUTSTRGO at location $FFCA.
The difference between them is that the former will print the string on a new line,
while the latter will continue the string from wherever the cursor happens to be.
Both these functions must be told where the string is. You do this by loading the
X register with the starting address where the string is stored before calling the
function. To enter strings in memory, we use FCC directive. The label associated
with the FCC will be automatically EQUated to the starting address of the string.
Type the following code and verify that OUTSTRG does indeed print a string.

OQUTSTRG EQU $FFC7
OQUTSTRGO EQU $FFCA

; program section. set origin to $C100
ORG $C100
LDX #ABOUTME *STARTING ADDRESS OF THE STRING
JSR OUTSTRG
SWI

; data section. set origin to $D000
ORG $D000

ABOUTME FCC /Hello, my name is ===your name =====/
FCB 4 ;dont forget this

3.4 Writing your first function

Before you write your first function, you should observe some standard conven-
tions. Your programs should always start at location $C100, or as specified by
your TA. Your data should always start at location $D000 or as specified by your
TA. A small amount of data can be stored starting at location $0000 (Page 0), but
you do not have too much space, 30 bytes or so. It is a matter of taste whether
you write the data section first or the program section first. You can not mix and
match. I personally prefer the following order: Page 0 section first, data section

3.4. WRITING YOUR FIRST FUNCTION 33

next and then the program section, though it is easier to follow the code if the
program section precedes the data section as in the previous example.

The program section should start with the main code, i.e. the code you want
to execute. The main code should be followed by various functions. The order is
not important.

What is a function? A function, also known as a subroutine is a self contained
code that implements a well defined functionality. What do I mean by self con-
tained? You should be able to draw a line above and below your code for the
function, and make sure that

1. Only way to branch out of the two lines is with JSR or BSR or RTS instruc-
tions. If you find any other branching instruction such as BRA, BEQ etc. then
your code is most likely incorrect

2. Only way to branch into an instruction between the two lines from an
instruction outside the two lines is with a JSR or BSR instruction. If you
find any other branching instruction such as BRA, BEQ etc. then your code
is most likely incorrect.

The function should terminate with a return from subroutine RTS instruction. It
is a good programming practice not to have more than one RTS statement in any
function.

Once you have written your function, it is there for you to use as many times
as you need. To use the function, you should know where its first instruction is
located in memory (technically known as the entry point). If you use the assembler
to create the function, you can place a label before the very first instruction. The
assembler will automatically EQUate the label with the first instruction. If the
function needs any additional information, they will have to be supplied by the
user prior to using the function (technically known as binding). The function you
will be writing will use one of the registers for binding. Also, many functions will
return some useful value to the caller. In this case, it is a good idea to return the
value in one of the registers.

Unless you write functions that do absolutely nothing (technically known as
stubs), the function will use and modify one or more registers. If the caller hap-
pens to keep valuable data in one of these registers, then you have a potential
problem. There are two possible solutions: The caller could save the values in
the registers before calling your function, and then restore it after your function
returns. Alternatively, your function can save the values in the registers it uses
and then restore the values before it returns. The first approach more efficient
but the second approach will result in fewer bugs. I strongly recommend that you
get into the habit of writing functions that clean up after themselves and restore

34 CHAPTER 3. FUNCTIONS AND BIT MANIPULATIONS

the registers the way they were before the functions used them!.
Here are the basic rules for writing functions

1. Decide on its functionality. Don’t try to create a Swiss army knife that has
multiple functionalities built in. Your function must do only one thing, and
it must do it well. Your documentation for the function must clearly state
the functionality

2. Decide on its name. Pick a meaningful name but keep the name to 8 char-
acters or less

3. Decide on the registers that will be used to pass information to the function.
8-bit values can be sent using A or B registers. 16-bit values can be sent
using X or Y registers?.

4. Decide what registers will be used to return values back to the caller. 8-bit
values can be returned using A or B registers. 16-bit values can be returned
using X or Y registers.

5. Decide what registers the function will use and which of these will be restored
back at the end. Clearly document which registers will be used and not
restored back as the registers that are modified by the function.

6. Write the function. Avoid the temptation of writing the function first and
then worrying about the other items!

As an example, we will write a simple function called RAND that will return a
random value every time it is called. How does this function work? The function
starts with a seed. We use an 8-bit number as a seed. The seed is used to calculate
a random number using some formula. To make sure we get a different number
every time the function is called, the seed value is changed. Typically, the random
number that is generated is used as the seed for the next random number. Thus,
we are actually generating a random sequence starting with some initial seed. The
formula® it uses is simple: It shifts the seed value left, and adds with carry the
value 20. The function needs one byte of storage to keep track of the seed. This
storage will be allocated in the data section using the FCB directive as

SEED FCB 0

!The only exception is the register that is used to return a value to the user. Clearly, these
registers should not be restored to their original value!

2For example, OUTA expects the data in theA register, while OUT1BYT expects the information
in the X register.

31 use this as a quick and dirty 8 bit random number generator. It is not the best, but the
code is only 5 line long!

3.4. WRITING YOUR FIRST FUNCTION 35

You use FCB to initialize consecutive memory loication (when you transfer the
code from the PC). The label associated with the instruction is needed to deter-
mine the address where the instruction forms the constant. The assembler will
automatically EQUate the label with the address associated with the FCB directive.

Type the following code, assemble it, transfer the S19 file to the HC11, and
test your program by CALL $C100. Repeat® the CALL statement and verify that
the value in the A changes after each call.

ORG $C100
JSR RAND
SWI

; Function: RAND
; Purpose: Generate a random number

; Inputs: None
; Outputs: A random value returned in A registers

; Registers modified: A register (which has a random value)
; Memory usage: The most recently generated random number is
; stored in memory with label LSTRAND

; This value is used to generate the next value

; Notes: Not the best random number generator around but does a
; halfway decent job.

; works as follows:
; shift the last random value left and add 20 with carry

RAND LDAA SEED
LSLA

4In BUFFALO, if you press the enter key at the prompt, BUFFALO will repeat the last
instruction. So you don’t have to type the CALL every time. Just press the enter key.

36 CHAPTER 3. FUNCTIONS AND BIT MANIPULATIONS

ADCA #20
STAA SEED ;don’t forget to save it back
RTS
3335555555533 Ends RAND 555 55555555555335555
; DATA SECTION
ORG $D000
SEED FCB 0
3333555553333 55:end of code i

3.4.1 On random sequences

When you are done running the program a few times, you reload the s19 file and
try again. You will get the same sequence all over again! Now this is useful when
you are debugging programs but is absolutely useless if you are writing a game
program. FEvery game will be 100% predictable! The way to overcome this is to
change the seed everytime you start your program in some unpredictable way.
One simple solution is to use the low order byte of the clock inside the HC11.
This clock is in locations $100E-$100F. So you can use the second location $100F
as the initial seed.

3.5 Your second function

For your second function, you will be writing a function that will print an 8-bit
value in HEX first and then in binary. We will call this function PRBINARY

An 8-bit number requires 2 hex-digits to print and BUFFALO has two routines
to help you, one to print the left digit and the other to print the right digit. These
are called QUTLHLF for out-left-half and OUTRHLF for out-right-half respectively.

To print it in binary, we will use the shift left instruction LSL . This instruction
will shift all bits left by 1 place and the (left most) bit that is shifted out will be
stored in the carry flag. L.e. if an 8-bit value before shifting was abcdefgh then
the value after shifting will be bcdefgh0. Here each of the letters a to h represent
bits. The carry flag will be set to a. Thus the value to be printed will be shifted
left 8 times. After each shift, the A register will be loaded with either the ascii

3.5. YOUR SECOND FUNCTION 37

code for 0 or the code for 1 depending on whether the carry is cleared or set®.
Note the function involves a counting loop.

We now have to decide register usage: We will use the A register to pass the
value to the function. Internally, this value will be moved to B as A is needed in
all the calls to BUFFALO routines. We need a counter, and we will use the X
register to keep count. As a good programming practice, we will store and restore
all registers we will use.

Here is the complete code for the function.

; Function: PRBINARY
; Purpose: To print a value in binary

; Inputs: Value to be printed is passed in the A register
; Returns: None

; Registers affected: None. The values in the registers are stored
; first and these values are restored at the end.

; Notes: The output consists of two parts. The value in A is first
s printed in HEX, and then in binary
PRBINARY
; first save the registers we will be using: a, b and x

PSHA

PSHB

PSHX
; copy a to be for later use

TAB

; print a as hex number (2 digits).

; print the left digit
JSR OUTLHLF

5Conveniently, the code for 1 is one more than the code for 0. So we load A with the code
for 0 and add the carry to it

38 CHAPTER 3. FUNCTIONS AND BIT MANIPULATIONS

; the function destroys the value in a,
; so re load it! then print second digit
TBA
JSR OUTRHLF

; now print a colon and some spaces
LDAA #°:°
JSR OUTA

LDAA #°
JSR OUTA
JSR OUTA
JSR OUTA

; now print it in binary
; b has the value to be printed (recall the old tab)

; shift b to the left by one bit and print ’0’ or ’1’ depending
; on what is in the carry flag
; repeat 8 times.

; we will use X register as counter

; to print what is in carry flag, we will load A

; with the code for ’0’ ; and add the carry to the code
; prior to calling OUTA

LDX #8 *COUNTER

PRBLOOP CPX #0
BEQ PRBDONE

LDAA #°0°

LSLB

ADCA #0

JSR OUTA

DEX

BRA PRBLOOP
PRBDONE

JSR OUTCRLF

3.5. YOUR SECOND FUNCTION 39

; restore the registers
PULX
PULB
PULA
RTS

3.5.1 Test your function

We can test the function by loading different values in the A register. The random
number generator we wrote first comes in useful here! Write the following program,
and test it by repeating the call to $C100 from the BUFFALO prompt.

; Standard buffalo equates
; Make sure you have ALL the equates in the file.

I

UCASE EQU $FFAO
WCHEK EQU $FFA3
DCHEK EQU $FFA6
INIT EQU $FFA9
INPUT EQU $FFAC
OUTPUT EQU $FFAF
OUTLHLF EQU $FFB2
OUTRHLF EQU $FFB5
OUTA EQU $FFB8
OUT1BYT EQU $FFBB
OUT1BSP EQU $FFBE
0UT2BSP EQU $FFC1
OUTCRLF EQU $FFC4
OUTSTRG EQU $FFC7
OUTSTRGO EQU $FFCA
INCHAR EQU $FFCD
VECINIT EQU $FFDO
ORG $C100

LDX #ABOUTME
JSR OUTSTRG

40 CHAPTER 3. FUNCTIONS AND BIT MANIPULATIONS

JSR RAND

JSR PRBINARY

SWI
;55 INSERT YOUR CODE FOR PRBINARY HERE
;55 INSERT YOUR CODE FOR RAND HERE

ORG $D0O0O
;5; INSERT ALL YOUR DATA (FCB, FCC, RMB etc.) here
ABOUTME FCC / INFORMATION ABOUT YQU /

FCB 4
SEED FCB 0

3.6 Setting bits

We will now write a function that will set a particular bit in some memory location.
The function should modify the value in the memory in such a way that it only
affects the specific bit without changing any other bit. For definiteness, we will
set bit #4 in memory location $00. Recall that the bits are numbered right to left
starting with bit #0. To set a bit, we use the ORA instruction. Write the following
program, and test it by repeating the call to $C100 from the BUFFALO prompt.

;; Insert standard buffalo equates here

ORG $C100

JSR OUTCRLF *NEED THIS FOR OUTPUTS TO LINE UP!
JSR RAND

STAA $00

JSR PRBINARY *PRINT BEFORE

JSR SETBIT4

LDAA $00

JSR PRBINARY *PRINT AFTER

SWI

39999 9 3 9 9 93 3399333333333 I IIINDIDIDIIINDIIIIIINIDINDIIIDIDINDINDIDIDIODIND

; Function: SETBIT4
; Purpose: SETS bit #4 in memory location $00
; Registers modified none

b

3.7. CLEARING BITS 41

SETBIT4
PSHA

LDAA $00
ORAA #7,00010000
STAA $00

PULA
RTS

;3 INSERT THE CODE FOR FUNCTIONS RAND AND PRBINARY HERE

ORG $D000
;; ALL THE DATA ITEMS GO HERE.

3.7 Clearing bits

We will now write a function that will clear a particular bit in some memory
location. The function should modify the value in the memory in such a way that
it only affects the specific bit without changing any other bit. For definiteness,
we will clear bit #4 in memory location $00. To clear a bit, we use the AND
instruction. Write the following program, and test it by repeating the call to
$C100 from the BUFFALO prompt.

;; Insert standard buffalo equates here

ORG $C100

JSR OUTCRLF *NEED THIS FOR OUTPUTS TO LINE UP!
JSR RAND

STAA $00

JSR PRBINARY *PRINT BEFORE

JSR SETBIT4

LDAA $00

JSR PRBINARY *PRINT AFTER SET

42 CHAPTER 3. FUNCTIONS AND BIT MANIPULATIONS

JSR CLRBIT4
LDAA $00

JSR PRBINARY *PRINT AFTER CLEAR
SWI

299999999 9999999939939 3 9993333933333 333393IIININIII)

; Function: CLRBIT4
; Purpose: Clears bit #4 in memory location $00
; Registers modified none

b

CLRBIT4
PSHA

LDAA $00
ANDA #711101111
STAA $00

PULA
RTS

;5 INSERT THE CODE FOR FUNCTIONS SETBIT4 RAND AND PRBINARY HERE
ORG $D000
;3 ALL THE DATA ITEMS GO HERE.$

3.8 Toggling bits

We will now write a function that will toggle (make it zero if it was a one; make
it one if it was a zero) a particular bit in some memory location. The function
should modify the value in the memory in such a way that it only affects the
specific bit without changing any other bit. For definiteness, we will toggle bit #4
in memory location $00. To toggle a bit, we use the eor instruction. Write the
following program, and test it by repeating the call to $C100 from the BUFFALO
prompt.

;; Insert standard buffalo equates here

3.8. TOGGLING BITS

ORG $C100

JSR OUTCRLF *NEED THIS FOR OUTPUTS TO LINE UP!
JSR RAND

STAA $00

JSR PRBINARY *PRINT BEFORE

JSR TGLBIT4

LDAA $00

JSR PRBINARY *PRINT AFTER 1 TOGGLE
JSR TGLBIT4

LDAA $00

JSR PRBINARY *PRINT AFTER 2 TOGGLE
JSR TGLBIT4

LDAA $00

JSR PRBINARY *PRINT AFTER 3 TOGGLES
SWI

3999999999 9999999933993 3393333933333 333IIIINDII)

; Function: TGLBIT4
; Purpose: tOGGLES bit #4 in memory location $00
; Registers modified none

I

TGLBIT4
PSHA

LDAA $00
EORA #7,00010000
STAA $00

PULA
RTS

;3 INSERT THE CODE FOR CLRBIT4 SETBIT4 RAND AND PRBINARY HERE

44 CHAPTER 3. FUNCTIONS AND BIT MANIPULATIONS

ORG $D0O00
;5 ALL THE DATA ITEMS GO HERE.$

3.9 Testing bits

Often we have to take a decision based on whether a bit is set or not in memory.
To test if one or more bits are set, we clear all other bits and see if the result is
zero. If so, none of these bits are set. If not, at least one of them was set. The
following program will print YES if bit #4 in memory location $00 is set. Or else
it will print NO.

;; Insert standard buffalo equates here
BIT4 EQU %00010000 ; THIS EQUATE MAKES THE CODE MORE READABLE

ORG $C100
JSR OUTCRLF *NEED THIS FOR OUTPUTS TO LINE UP!
JSR RAND
STAA $00
JSR PRBINARY *PRINT BEFORE
LDAA $00
ANDA #BIT4
BEQ NOPE
LDX #YESSTR
JSR OUTSTRG
SWI
NOPE
LDX #NOSTR
JSR OUTSTRG
SWI

;5 INSERT THE CODE FOR CLRBIT4 SETBIT4 RAND AND PRBINARY HERE

ORG $D000
;; ALL THE DATA ITEMS GO HERE.$
YESSTR FCC /YES/
FCB 4

3.10. HARDWARE INTERFACING 45

NOSTR FCC /NO/
FCB 4

3.10 Hardware Interfacing

Working with random numbers is fine, but we want to do something useful. In
HC11, there area special memory locations called PORTS. The special nature of
these locations allows us to have direct access to the individual bits using external
circuitry. Each bit in the port has an I/O line associated with it. This line
provides access to the bit. The bits in the port can be one of two types:

1. A bit in a port could be an input bit. If this is the case, then we can only
set or clear the bit using external electrical circuit connected to the I/0 line
associated with the bit. This means that the code you wrote earlier to set or
clear a bit will have no effect on the bit. You can however check the bit and
take appropriate action. To set the bit, you have to set the voltage of the
I/0 line above 3 volts (without exceeding the supply voltage of 5 volts). To
clear the bit, you have to set the voltage of the bit to below 2 volts (without
going below zero).

2. A particular bit can be an output bit. If this is the case, we can set or clear
the bit in our program and the bit will control the I/O line associated with
the bit. If the bit get set, then the voltage on the line will go to 5 volts. If
the bit is cleared, the voltage on the line will go to zero. Make absolutely
sure that you do not connect any external device that can control
the voltage (such as a voltage source) to the line. The single biggest
reason why HC11 ports get burnt is when some external device tries to send
the voltage on the line to zero while your program tries to send it to 5 volts
or vice versa. If you are concerned about damaging the port. always
connect 2.2K or larger resistor in series with the port. This will
limit the port current to 1 mA or less.

3.10.1 PORTA at location $1000

In this experiment we shall work with PORTA which is at memory location $1000.
The bits of PORTA are designated as PA7, PA6, PA5, --- PAO. If you are using
the FOX11 board, the lines associated with these ports are clearly labelled. If you
are using CMD11E1 from Axiom, the lines are the first 8 pins in the MCU CONNECTOR.
The bits PAO, PA1, PA2 are inputs. This means you can connect external circuits
to these pins. The bits PA3, PA4, PA5, PA6 are outputs. This means you can

46 CHAPTER 3. FUNCTIONS AND BIT MANIPULATIONS

drive devices from these pins (as long as you do not supply more than 5 mA). PA7
is bidirectional and you, as the programmer, can configure the pin as either input
or output.

WARNING: You may have wired the port as input and either by accident or
oversight, may set the pin as an output pin. This can seriously damage the pin
if the pin carries currents in excess of 5 mA or so. To prevent the damage, make
sure there is a current limiting resistor (4.7K) in series with the pin. This warning
is applicable to any pin that is bidirectional.

WARNING: If you lend your HC11 to anyone, make sure you disconnect any
circuit that may be connected to PA7.

Special instructions for CMD11E1 users

1. Locate the jumper JP13 and make sure that it is open.

2. Locate the MCU port. This is a dual row 34-pin Berg style connector.
Locate pin #1 on the port. This is identified with the number 1 on the
front of the board. On the other side (solder side), pin #1 is identified by a
square solder.

3. Connect a ribbon cable to the port. Use a continuity tester to locate and
identify the following pins: pin 1 (PAO), pin 5 (PA4), pin 6 (PA5), pins 9
and 10 (5 Volts), pins 11 and 12 (Ground). (See page 15 of the User’s guide
that came with your board.)

4. Make two test light emitting diode probes. It is a good idea to have several
probes handy. To make a test probe, connect a 3.3K resistor to the anode
of a light emitting diode (See figure 3.1). Use a light emitting diode with
an operating voltage of 1.7 volts and a current rating in the 1-5 mA range.
If you use an light emitting diode with 204+ mA operating current, the light
emitting diode would be dim when it lights up and you may have to look
carefully to see if it is on. Test the probe by connecting the free end of
the resistor to pin 9 and the free end of the light emitting diode to pin 11.
The light emitting diode should light-up. If not, the chances are you have
connected the resistor to the cathode of the light emitting diode. Redo your
circuit by connecting the resistor to the anode.

5. Connect a (LEFT) test probe between pin 5 and pin 11. The cathode of the
light emitting diode should be connected to pin 11 and the free end of the
resistor to pin 5.

3.10. HARDWARE INTERFACING 47

3.3K %

L] To ground

To test point
PA5 for example

Figure 3.1: Test Probe. Make sure that the resistor is connected to the anode of
the light emitting diode. The longer lead of the light emitting diode is the anode.
To test a pin, connect the cathode to ground and the resistor to the pin.

5V (pin 9 or 10)

\

PAO (pin 1) ‘ Switch
4.7TK

22K
Ground (pin 11 or 12)

Figure 3.2: Typical input connection

6. Connect a (RIGHT) test probe between pin 6 and pin 12. The cathode of
the light emitting diode should be connected to pin 12 and the free end of
the resistor to pin 6.

7. Label the two light emitting diodes as LEFT and RIGHT so that it is easy
to identify them (you can use a magic tape and small pieces of paper).

8. Connect the input circuit as shown in figure 3.2.

9. Check and recheck all your connections before you connect the power to the
HCI11.

Special instructions for FOX11 users

1. Connect two LED circuits shown in figure 3.1 to PA4 and PA5. Label the
circuit connected to PA4 LEFT and the one connected to PA5 as RIGHT.

48 CHAPTER 3. FUNCTIONS AND BIT MANIPULATIONS

2. Connect the input circuit as shown in figure 3.2.

3.10.2 Controlling the LED

Use memory modify, MM $1000, command to modify PORTA. Change the value
in the location to 00, 10, 20, and 30. (Note: When you communicate directly
with the HC11 using BUFFALO commands, you do not type the $.) After each
change, look at the state of the light emitting diodes and write down what you
see. Provide a brief explanation of what you see.

Using the methods you learnt in earlier labs, write a program that will read
the keyboard and depending on what the user types, perform the following:

Key Action

Q or g | Turn on the LEFT led. The state of other led should not change.
Z or Z | Turn off the LEFT led. The state of other led should not change.
E or e | Turn on the RIGHT led. The state of other led should not change.
C or ¢ | Turn off the RIGHT led. The state of other led should not change.

3.10.3 Reading an external switch

Use memory dump to see the contents of $1000. Close the input switch and dump
the contents of location $1000. Repeat the experiment with the switch open.
Write down what you see and provide a brief explanation of your observation.

Write a program that will, in an infinite loop, print either CLOSED or OPEN,
depending on the state of the switch. The program should continually monitor
the state of the switch, and print CLOSED is the switch is closed. Or else it should
print OPEN.

Chapter 4

Programs

4.1 Objective

To become familiar with writing programs. This lab also illustrates the use of
assembler directives.

4.2 What you should do

You will have to turn in your LST files for the programs you write for this lab.
Check with the TA for additional instructions.

4.3 Programs

When you write programs in a high level language such as C, C++, Java, the
compiler facilitates modular program development using function. In an earlier
lab, we discussed some basic rules for writing functions. Another facility that
higher level languages provides is the use of variables. Key features of variables
in high level languages are:

1. Variables generally have a name and you use the name to manipulate them.

2. Variables have a type. The compiler keeps track of the type and makes sure
that the way a variable is used conforms to its type.

3. Compiler negotiates with the operating system to obtain adequate memory
for the variable.

4. Compiler makes sure that a memory allocated to a variable is not acciden-
tally also allocated to another variable

49

50 CHAPTER 4. PROGRAMS

5. Compiler keeps track of the life and scope of the variable so that the variable
is available only when it is in the scope of the instruction (the simplest case
is the distinction between global and local variables.

In assembly code, you are pretty much on your own. First of all, variables are
known by their address. Some variables require more than one location. In this
case, you allocate consecutive memory locations for the variable, and the address
of the variable is the first of these locations. It is your responsibility to make
sure that (a) you set aside adequate memory for the variable, and (b) you do not
assign the same location for more than one variable. The most common errors
that programmers make is not keeping this in mind. For example, the programmer
may set the address of a two byte variable as $3120 and the address of another
variable as $3121. It is a bad idea for you to manually assign addresses
to variables. Let the assembler do it for you. However, if you have to manually
assign an address to a variable, EQUate a label to the variable as

TOTAL EQU $3800 *variable to keep track of the total

The above instruction defines a variable called TOTAL that is stored in locations
starting from $3800. Note you have no idea how many bytes are needed for the
variable and therein lies the potential bug!

4.3.1 How the assembler works

Inside the assembler is a variable called the location counter, also known as the
dot in the unix community. When the assmbler starts, the location counter is
initialized to zero. As the assembler reads your program, the location counter
changes in response to your code. For example, the ORG command sets the location
counter to the value after the ORG instruction. Thus, if you want to change the
location counter to $00EB, you would write

ORG $OOEB

The assembler keeps a copy of the HC11 memory internally, and the location
counter is used to address the memory. Here, briefly, is how the assembler works:

1. Read the instruction. If the instruction has a label, and it is not an EQU
instruction, then equate the label to the location counter. If the instruction
is an EQU instruction, the label is EQUated to value after the mnemonic.

2. If the instruction is a valid HC11 instruction, generate the code for the
instruction. The code is stored in consecutive memory locations starting
from the address given by the location counter. The location counter is
incremented by the amount of memory needed to store code.

4.4. YOUR FIRST PROGRAM 51

3.

If the instruction is a RMB instruction, then add the value after the mnemonic
to the location counter.

If the instruction is a FCB command, then a sequence of comma-separated
values following mnemonic are stored in consecutive locations starting from
the address given in the location counter. The location counter is incre-
mented by the amount of memory needed to store these bytes. FCC is a
convenient way to specify a sequence of ASCII characters. Thus the follow-
ing two statements are equivalent

FCB 72, 69, 76, 76, 79
FCC /HELLO/

The FDB instruction is similar to FCB, except the values are interpreted as 16-
bit numbers. These initializations are done in your PC and then transferred
to the HC11 wvia the S19 file. If these memory locations in your HC11 are
modified after the transfer, either by your program or by accident, then you
have to reload your S19 file! Also, DO NOT use these commands to initialize
variables. Your program will work only once. If you rerun your program,
the variables will not be reinitialized!

Here is an example of defining variables and constants (variables that your pro-
gram will not modify).

Vi
V2
THOU
BUFF
BUF2

ORG $3000 ;Start of data section.

RMB 4 ; set aside 4 bytes. EQUate V1 to first address
RMB 11; set aside 11 bytes

FCB 3, $E8 ; Initialize 16-BIT variable called THOU
FILL $22,18 ; same as fcb with $22 repeated 18 times
RMB 20

OPT s ; turn on symbol dump option

It is a good idea to turn on the symbol dump option. This will cause assembler
to print all the symbols at the end of your program listing. Type in the above
sequence of instructions and assemble it. Look at the LST file and write down
what the symbols V1, V2 etc., are EQUated to and explain the results.

4.4

Your first program

We will now write the first program. When writing assembly code, a convenient
way to document your code is to write the pseudocode. Rather than invent another

52 CHAPTER 4. PROGRAMS

pseudo language, I will use a C like syntax!. The program we want to write should
be similar to the following C program (since HC11 is essentially an 8-bit micro,
all variables will be unsigned chars to keep things simple).

#include <stdio.h>
unsigned char v1, v2, v3, v4; unsigned char
total; main() {
vl = 11;
v2 = 0x2F; /* In C prefix Ox denotes HEX */
v3 = A’
v4d = 044; /x In C prefix O denotes octal */
total = v1+v2+v3+v4;
printf ("%02X", (unsigned) total);
return O;

3

Compile and run the above program using any C compiler. The output of your
program should be 9F. Now assemble the following HC11 program, and run it to
verify that you get the same answer:

;Name: etc

; This program adds 4 numbers and prints the answer.
outlhlf equ $£fb2

outrhlf equ $£fbb

org $2000
main

; vl = 11,

ldaa #11

staa vl

;v2 = 0x2f;
ldaa #$2f
staa v2

;v3 = A,
ldaa #’A°
staa v3

! This reverses history! C language was invented to avoid writing assembly code!

4.5. ON YOUR OWN! 33

;v4d = 044;
ldaa #044
staa v4

;total = v1+v2+v3+v4;
ldaa vi

adda v2

adda v3

adda v4

staa total

;print total as 2 digit hex number
ldaa total
jsr outlhlf
ldaa total
jsr outrhlf

swi

org $3000
vl rmb 1
v2 rmb 1
v3 rmb 1
v4 rmb 1
total rmb 1

opt s

Modify the C program so that v3 = ’A’; is replaced by v3=getchar () ;. Run
the C program and type the upper case letter A and press enter. You should
see the same output as before. Now replace the instruction ldaa #’A’ by jsr
inchar and make sure that you equate inchar to $ffcd. Run the assembly above
assembly language program and verify that it behaves the same as the C program.

4.5 On your own!

1. Write an assembly program that does the same as the following C program:

#include <stdio.h>

o4

CHAPTER 4. PROGRAMS

char v;
char total;
main() {
v = 0;
total = O;

v = v+l
total = total + v;

v = v+l
total = total + v;
v = v+1;
total = total + v;

v = v+l
total = total + v;

v = vt+l;
total = total + v;

printf ("%02X", (unsigned) total);
return O;

}

. Modify the program so that the initialization v = 0 is replaced by a call to

getchar (). Run your C program and try different inputs at the keyboard.
Make corresponding changes to the assembly language program and verify
your results.

. Modify the assembly language program so that you use a counting loop to

loop 5 times over the basic code.

. Modify the previous version (using a loop) where the number of times around

the loop is in an 8-bit variable called count. Your program should initialize
the variable to 5 so that the loop is executed 5 times.

. A convenient way to get a value between 0 and 9 from the user is to use the

instruction sequence

jsr inchar

4.5. ON YOUR OWN! 35

anda #$0F
; in C, use: getchar() & OXOF

Use the above sequence to let the user specify the count. When expecting
the user to enter a value, it is a good idea to prompt the user. Your code
may look something like:...

;; various equates and comments...

I

)

org $2000
1ldx #prompt
jsr outstrg
jsr inchar
anda #$ff
staa count

; rest of the code goes here

org $3000

; various RMB
count RMB 1

A RMB 1
total RMB 1

prompt fcc /How many times please? /

fcb 4

6. Write a program that will do the following:

Get a number between 0 and 9 from the user and store in a variable
called v1.

Multiply v1 by 4 and store the result in a variable called v2.
Add v1 and v2 and store the result in a variable called v3.
Multiply v3 by 2 and store the result in a variable called v4.

Print the values in the variables separated by a comma. In the last
lab, you saw an example for printing a colon. You can use the same
approach.

56

CHAPTER 4. PROGRAMS

(f) Modify the program so that the output reads some thing like:

vl = 07
v2 = 1C
v3 = 23
vd = 46

7. Write a function that will be passed a value in A register. The function

should return 10 times the value passed to it. Use the above function to
write a program that does the following: The program should get a digit
from the user, multiply it by 10 and store the value in a variable called tens.
It should then get a digit from the user and add it to the variable tens and
store it in a variable called DecimalIn. The program should then print the
value in the variable.

. Use the code you wrote to create a function that will read a two digit decimal

number from the user. Call this function ReadDecimal. Write a program
that will call this function to read a two digit number and store the value
in a variable called DecimalIn. The program should then print the value in
the variable.

. Type the following C program, run it to see what the output is. Rewrite the

program in assembly language and run it on the HC11. Verify that output
of the assembly program matches the C program.

#include <stdio.h>

char delta, value;
char count;

main() {
value = O;
delta = 1;
count = 11;
foo:

if (count == 0) goto bar;

printf ("%02X", (unsigned) value);
putchar(’,’); putchar(’ ’);

value = value + delta;
delta delta + 2;
count count -1;

4.5. ON YOUR OWN! o7

10.

goto foo;

bar:
return O;

Type the following C program, run it to see what the output is. Rewrite the
program in assembly language and run it on the HC11. Verify that output
of the assembly program matches the C program.

/*

I decided to use fprintf(stderr instead of printf(
as printf(and getche don’t mix well.

I am forced to use getche instead of getchar because
getchar puts the terminal in the ’cooked’ mode rather
than ’raw’ mode and there seems to be no way to uncook
the input in MS Windows.

The program as written will work on all variants of Windows
and on unix boxes if you know the right curses!

Note: getche is an exact equivalent of INCHAR in BUFFALO
To print a string, you use OUTSTRG in BUFFALO

*/

#include <stdio.h>
#include <conio.h>

char c;

main() {
foo:
fprintf (stderr,"\n\nWelcome! Your choices:\n\n");
fprintf (stderr,"\nl. Set temperature");
fprintf (stderr,"\n2. Set Speed\n"
fprintf (stderr,"\nChoice please: ");
c = getche();

58

one:

two:

CHAPTER 4. PROGRAMS

if (c == ’1’) goto one;

if (c == ’2’) goto two;

fprintf (stderr,"\n\nNot a valid choice!\n");
goto foo;

fprintf (stderr,"Good choice. \n");
goto more;

fprintf (stderr,"Try later\n");

more:

bye:

fprintf (stderr,"Try again? ");
c = getche();

if (c == ’y’) goto foo;

if (c == ’Y’) goto foo;

if (c == ’n’) goto bye;

if (c == ’N’) goto bye;

goto more;

return;

Chapter 5

Tables

5.1 Objective

To become familiar with table driven code.

5.2 What you should do

You will have to turn in your LST files for the programs you write for this lab.
Check with the TA for additional instructions. In most of the examples, the name
is left blank as . Make sure you enter your name in its place.

5.3 Tables

What is a table? Technically, table is same as an array except we use the term
table to refer to arrays whose elements are constants. To operate on the table, we
need two pieces of information, where, in memory, the table starts(the starting
address) , and how many elements are in the table (the size or dimension).
In this lab, we will initially consider the case where each element requires one byte
of memory.

5.4 Setting up a table

To setup a table in memory, we generally use FCB, FDB and FCC. For example, if
we want to setup a table of prime numbers, we would write (using decimal since
it is easier to read):

59

60 CHAPTER 5. TABLES

ORG $3000 *data section

primes fcb 2,3,5, 7, 11, 13, 17, 19, 23, 29 xtable of some primes
nprimes equ 10 *number of entries in the table

If you want to set up a table of ascii code for digits, you would write

ORG $3000 *data section

digitsl fcb $30, $31, $32, $33, $34, $35, $36, $37, $38, $39
ndigitsl equ 10 *number of entries in the table

A better way to do the same is to write

ORG $3000 *data section ..$

digits fcc /0123456789/
ndigits equ 10 *number of entries in the table

Assembler will convert FCC to a sequence of FCB.

Exercise: Write an ASM file with the two versions of the digits tables, assemble
the file and look at the LST file. Verify that the two tables are identical.

5.5 Working with tables

We will write functions to perform some basic tasks with the tables. In all these
functions, we will use the following convention:

1. The starting address will be passed to the function in the X register.

2. The size of the table will be passed to the function in the B register.

5.5.1 Table lookup

This is the simplest and the most useful function. We want to know if an element
is in the table. For now, we will work with a table of 8-bit quantities. The value
to be looked up will be passed in the A register. The function will have to return

5.5. WORKING WITH TABLES 61

a Yes/No value. A convenient way to return a Yes/No value is to use a hardware
flag. Let us use the Carry flag. The function will set the flag if the answer is yes;
or else it will clear the carry.

2999999099999 99939939399 333333333333333333IIIIIIIIIDINIIIIDID

; lookup: Function to lookup a value in a table
; Checks if the value in A register is in the table

; Entry: Starting address in X, size in B, value in A
; Exit: Carry set if the value in A is in the table;
; cleared if not in the table

3999999 9999999999993 9 9933339333339 IIIIIIIIIIIIINIINIIIY

lookup
lkploop
tstb
beq notthere *this is the basic counting loop
cmpa 0,x
beq foundit
inx
decb
bra lkploop
notthere
clc
rts
foundit
sec
rts

Here is a program that uses the function:

;Name:

;email:

;date:

; Standard buffalo equates

; Make sure you have ALL the equates in the file.

I

ucase equ $ffal
wchek equ $ffa3
dchek equ $ffab

62

init
input
output
outlhlf
outrhlf
outa
outlbyt
outlbsp
out2bsp
outcrlf
outstrg
outstrgo
inchar
vecinit

equ $ffa9d
equ $ffac
equ $ffaf
equ $£fb2
equ $£fbb
equ $£fb8
equ $ffbb
equ $ffbe
equ $ffcl
equ $ffcd
equ $ffc7
equ $ffca
equ $ffcd
equ $£ffd0

org $3000

; setup some strings ...

preamble
fcc
fcb
fcc
fcb
fcc
fcb
fcc
fcb
fcc
fcb
fcc
fcb

yesstr
fcb

nostr
fcb

, setup

vowels
nvowels

/

10

/Lab on using Tables/
10 *use 10 to start a new line
/Name:

10,

10

/This program is an infinite loop! /

10

/Hit the reset button to quit/

10

/

10,10,10, 4

fcc
10,
fcc
10,

the

fcc
equ

I

table of vowels

/aeiouAEIQU/

10

is a vowel/

is not a vowel/

CHAPTER 5. TABLES

5.5. WORKING WITH TABLES

org $2100
ldx #preamble
jsr outstrg
mainloop
jsr inchar
ldx #vowels
ldab #nvowels
jsr lookup
bcs isvowel
1ldx #nostr
jsr outstrgo
bra mainloop
isvowel 1ldx #yesstr
jsr outstrgo
bra mainloop

D0 29 3 2 9 3 0 3 30 333333 I I NIIIIIDIIDNIIDIIDINDIIDNDIIDNIDNDIIDNDIDIDNDIDINDNIDNDIDIDNDIODND
; lookup: Function to lookup a value in a table
; Checks if the value in A register is in the table

; Entry: Starting address in X, size in B, value in A
; Exit: Carry set if the value in A is in the table;
; cleared if not in the table

2999999 9 99 9 93 3993333333333 IIIIIDIDINDIIIIINDIIIIDIDINDIIIDIDINDINDIINDIODND

lookup
lkploop
tstb
beq notthere *this is the basic counting loop
cmpa 0,x
beq foundit
inx
decb
bra lkploop
notthere
clc
rts
foundit
sec
rts

64 CHAPTER 5. TABLES

Exercise: Type the above program, assemble it, transfer the S19 file to the
68HC11, and run the program with CALL 2100. When the program starts, type
the following text Pack my box with five dozen liquor jugs.

Exercise: The lookup program affects the X and B registers. Modify the func-
tion so that the function initially stores these two registers in the stack, and
restores them before returning. Verify that the program works correctly.

Exercise: Modify the program by adding another table, the table of symmetric
characters: AHIMOTUVWXYimnouvwxy. The program should, in addition to checking
to see if a character is a vowel, it should also check to see if it is a symmetric
character. Run the program and enter the following text: Axiomboard. You
should get an output similar to the following:

done
>c 2100

Lab on using Tables

Name: _____________________
This program is an infinite loop!
Hit the reset button to quit

is a vowel and is a symmetric character

is not a vowel and is a symmetric character

is a vowel and is a symmetric character

is a vowel and is a symmetric character

is not a vowel and is a symmetric character

is not a vowel and is not a symmetric character
is a vowel and is a symmetric character

is a vowel and is not a symmetric character

is not a vowel and is not a symmetric character
is not a vowel and is not a symmetric character

0K m O T B O H X =

5.5.2 Input with validation

Another use of the table lookup is to validate input from the user. Suppose we
want the user to enter a social security number. In this case, we want to make sure

5.5. WORKING WITH TABLES 65

that we accept only digits and ignore non-digits (the user may be in the habit of
typing spaces, dashes etc. You want to silently ignore these). So it will be useful
to write a function, called rddigit that will accept only digits. The following
program shows a typical usage

;Name :

;email:

;date:

; Standard buffalo equates

; Make sure you have ALL the equates in the file.

ucase equ $ffal
wchek equ $ffa3
dchek equ $ffab
init equ $ffa9
input equ $ffac
output equ $ffaf
outlhlf equ $£fb2
outrhlf equ $ffbs
outa equ $£fb8
outlbyt equ $£ffbb
outlbsp equ $ffbe
out2bsp equ $ffci
outcrlf equ $ffc4
outstrg equ $ffc7
outstrgo equ $ffca
inchar equ $ffcd
vecinit equ $££d0

org $3000
; setup some strings ...
preamble

fcc / /

fcb 10

fcc /Lab on using Tables/

fcb 10, 10 *use 10 to start a new line
fcc /Name:
fcb 10
fcc /This program is an infinite loop! /
fcb 10

66 CHAPTER 5. TABLES

fcc /Hit the reset button to quit/

fcb 10

fcc / /
fcb 10,10,10, 4

; setup the table of digits

digits fcc /0123456789/
ndigits equ 10

org $2100

ldx #preamble

jsr outstrg
mainloop

jsr rddigit

bra mainloop

299999 9 99 9 3 3399333333333 3333333 IIIIIIINIDIINIIIINIDINDIINIINIINIDINDIIINDINDINDND

; rddigit: Behaves like inchar, except ignores non-digits

2909999999 9999993939999 3 9933333933333 33393IIIIIIIIIDIIIIID

rddigit jsr input *This does not wait for the user
tsta
beq rddigit *Looks like the user has not typed anything

; 1f we get here, the user typed something. Verify it first

ldx #digits

ldab #ndigits

jsr lookup

bcc rddigit *oops, not in the table. Go back for more

; 1f we get here, the input was ok

; echo it back as the user would like some feedback

jsr outa
rts

5.5. WORKING WITH TABLES 67

;35 Add the code for lookup function here

Exercise: Type the above program and run it. Enter the following input and
explain what you see:

Exercise: Type the above program and run it. Enter the following input and
explain what you see: 123-34-1879.

Exercise: Modify the above program so that it accepts exactly 10 digits and
stops with an SWI after reading 10 characters. In other words, convert the main
loop into a counting loop. You should keep the count in the B register. Verify
your program with the input: 823--xx-34-1879.

5.5.3 Translations using tables

Some time we want to translate a value to another value. For example if the user
types the character 8, your program will receive the ascii code for the character.
You now will have to convert it to its value, viz 8. This is easy since you just have
to subtract $30. However, if the user enters data in HEX, then he would expect
the program to translate A and a to 10, B and b to 11 and so on. For problems of
this nature, we first write down the translation table

value translation
$300r’0’ |0
$31or’1” |1
$32 0r 2" | 2
etc. etc
$390r’9 |9
$41 or A’ | 10
$61 or ’a’ | 10
$42 or 'B’ | 11
$62 or b’ | 11
etc. etc
etc. etc

In our assembly program we set up two tables. It is extremely important that the
two tables be ordered as follows: The table of values first immediately followed
by the table of translations. For example, to perform the above translation, we
will write

68 CHAPTER 5. TABLES

hexchars fcc /0123456789AaBbCcDdEeFf/
hextrans fcb 0,1,2,3,4

fcb 5,6,7,8,9

fcb 10,10, 11,11, 12,12, 13,13, 14,14, 15,15
nhexchars equ 22

To illustrate the use of the translation table, let us write a function that will
translate telephone numbers. For example, if the input to the program is a mixture
of numbers and letters as in 1-800-CALLATT the program should translate it to
1-800-2255288. The translation table can be found on any telephone and is:

value translation
A’ B,CP 2
‘D’ E’, F’ 3
'G’,H, T 4
J7 K L 5
7M7’ 7N7’ 707 6
P,°Q, RS | T
7,07, 'V 8
WX Y |9

The following program sets up the above table and uses it to translate phone
numbers.

;Name:

;email:

;date:

; Standard buffalo equates

; Make sure you have ALL the equates in the file.

b

ucase equ $ffald
wchek equ $ffa3
dchek equ $ffab
init equ $ffa9
input equ $ffac
output equ $ffaf
outlhlf equ $£fb2
outrhlf equ $£fbb
outa equ $£fb8
outlbyt equ $£ffbb

outlbsp equ $ffbe

5.5. WORKING WITH TABLES 69

out2bsp
outcrlf
outstrg
outstrgo
inchar
vecinit

org
; setup
preamble
fcc
fcb
fcc
fcb
fcc
fcb
fcc
fcb
fcc
fcb
fcc
fcb

; setup
alphabet
nums

nalphabe

org
ldx
jsr
jsr

mainloop

jsr
jsr
jsr

psha

equ $ffci
equ $ffc4
equ $ffc7
equ $ffca
equ $ffcd
equ $££d0

$3000
some strings ...

/ /
10

/Lab on using Tables/

10, 10 *use 10 to start a new line
/Name:
10
/This program is an infinite loop! /

10

/Hit the reset button to quit/

10

/ /
10,10,10, 4

the tables

fcc /ABCDEFGHIJKLMNOPQRSTUVWXYZ/
fcc /22233344455566677778889999/
t equ 26

$2100
#preamble
outstrg
outcrlf

inchar
ucase ; convert to upper case if necessary
translate ; perform the translation

; save it in the stack for now

70 CHAPTER 5. TABLES

; print 2 spaces so the output looks neat
ldaa #0
jsr outa
jsr outa

pula ; get it back
jsr outa

jsr outcrlf

bra mainloop

2999999999999 999399393393 3333993333333333IIIIIIIIIDINIIID)

;translate: Translates telephone codes.
;Entry: Register A has the value to be translated
;Exit: If A has an upper case letter, then its content is replaced
by the the translation given on the phone is performed
ABC -> 2, DEF ->3, etc.
If A has any other character, it is left alone.

3

399999 3 99 9333993333333 3333333333 IDIINIIIINIDIIIIINIDINIDIIIDINIDINIDIIIDINIDINDINDIND

translate
ldx #alphabet
ldab #nalphabet
jsr lookup
bcc bye ; Not an alphabet. Leave it alone

ldaa nalphabet,x ; This is the key to translation
bye
rts

299999999 9999993939993 3 3933333933333 IIIIIIIIDIIIIID

; lookup: Function to lookup a value in a table
; Checks if the value in A register is in the table
; Entry: Starting address in X, size in B, value in A
Exit: Carry set if the value in A is in the table;

cleared if not in the table

)

2999 99 3 99 9333933333333 3333333333333 IIIIIDIDINIDIINIIIINIDINIDIIIIDINIDIIIDINIDINDIND

lookup

5.5. WORKING WITH TABLES 71

lkploop
tstb
beq notthere *this is the basic counting loop
cmpa 0,x
beq foundit
inx
decb
bra lkploop
notthere
clc
rts
foundit
sec
rts

Exercise: Type the above program and enter the input: 1-800-UMD-ALUM. You
should see the following output. Clearly explain how the translation gets done.

Lab on using Tables

Name: ______ __ __ o _____

This program is an infinite loop!
Hit the reset button to quit

O O @
O O

O = c
w o 0

=
N

72

=cr

o 00 O

CHAPTER 5. TABLES

Chapter 6

Timing using Polling

6.1 Objective

Introduces polling timer overflow flag to create a simple clock and to generate
ON-OFF output signals.

6.2 Getting started

Make sure you have made the external connections show in figures 3.1 and 3.2
before proceeding further.

6.3 Timing

In this part of the lab, we will monitor the TOF flag. This flag is controlled by the
free running counter. The free running counter is a 16 bit counter that counts the
clock ticks. It is set to $0000 on power up. It counts up to $FFFFand then rolls
over to $0000 and the process is repeated until you power off the HC11. Every
time the counter rolls over, it sets the TOF flag. This flag is not automatically
reset and it is your responsibility to reset it in your code depending on your need.
To reset the flag you have to write a 1 to it L.

Your HC11 most likely uses a 8 MHz crystal which means that the processor
speed is 2 MHz, or you get 2 x 10° clock ticks every second. The free running
counter rolls over every 26 ticks, or you get

2 x 106

6 = 30.52 overflows every second

I This is true of all HC11 flags. You reset a flag, i.e. make it go to zero, by writing a 1 to it!

73

74

CHAPTER 6. TIMING USING POLLING

We can use this to create a % Hz square wave by toggling an output pin every
time counter rolls over. Here is the code (you have to fill in the details!)

; Various defines go here ...
ORG $D000 don’t forget the $
ME FCC /Your name/
FCB 10
FCC /ECE 372/
FCB 10
FCC /Date the program was last changed/
FCB 10, 10, 4

ORG $CO00 DONT FORGET THE $
LDX #ME
JSR OUTSTRG ; MAKE SURE YOU HAVE EQU FOR OUTSTRG

LOOP1

; CLEAR THE FLAG. NO HARM IS DONE IF IT IS ALREADY CLEARED

LDAA #710000000
STAA TFLAG2

;WAIT FOR THE FLAG TO BE SET
LOOP2

LDAA TFLAG2

ANDA #7,10000000

BEQ LOOP2

;NOW TOGGLE PA4
LDAA #7,00010000
EORA PORTA
STAA PORTA

;DO IT ALL OVER AGAIN
BRA LOOP1

Type and run the above program. Connect the LED to PA4 (pin #5) and you
should see it flicker. Connect the pin to a oscilloscope and verify that you are
generating a square wave. Verify that the frequency is correct.

6.3. TIMING 75

6.3.1 Slowing it down

In the last experiment, we toggle the pin so fast that chances are you did not
notice the LED’s blink. We can slow it down by toggling only every so many
TOF overflows (say 31 overflows). All we need to do is introduce a counting loop
as shown below. Note that the program structure is not changed at all.

; Various defines go here ...
ORG $D000 don’t forget the $
ME FCC /Your name/
FCB 10
FCC /ECE 372/
FCB 10
FCC /Date the program was last changed/
FCB 10, 10, 4

ORG $C000 DONT FORGET THE $

LDX #ME

JSR OUTSTRG ; MAKE SURE YOU HAVE EQU FOR OUTSTRG
LO0P1

LDAB #31 ’SET UP COUNTER
LTOP

TSTB

BEQ LBOT

; CLEAR THE FLAG. NO HARM IS DONE IF IT IS ALREADY CLEARED
LDAA #7,10000000
STAA TFLAG2

;WAIT FOR THE FLAG TO BE SET
LOOP2

LDAA TFLAG2

ANDA #7,10000000

BEQ LOOP2

DECB
BRA LTOP

LBOT

76

;NOW TOGGLE PA4
LDAA #7,00010000
EORA PORTA
STAA PORTA

;DO IT ALL OVER AGAIN
BRA LOOP1

CHAPTER 6. TIMING USING POLLING

Chapter 7

Interrupt Processing

7.1 Objective

To become familiar with interrupt processing.

7.2 Background

In an earlier lab, you had to generate a 30.52 Hz square wave signal on PA4 pin.
The code for generating the square wave is given below for your reference. Make
sure that you run the program and verify that you get the square wave before
proceeding further. Also, to understand this lab, you must connect the PA4 pin
to a oscilloscope and see the square waves.

; Various defines go here ...
ORG $3000 don’t forget the $

ME FCC /Your name/
FCB 10
FCC /ECE 372/
FCB 10
FCC /Date the program was last changed/
FCB 10, 10, 4

ORG $2000 DONT FORGET THE $
LDX #ME
JSR OUTSTRG ; MAKE SURE YOU HAVE EQU FOR QUTSTRG

LOOP1

7

78 CHAPTER 7. INTERRUPT PROCESSING

; CLEAR THE FLAG. NO HARM IS DONE IF IT IS ALREADY CLEARED
LDAA #710000000
STAA TFLAG2

;WAIT FOR THE FLAG TO BE SET

LOOP2
LDAA TFLAG2
ANDA #710000000
BEQ LOOP2

;NOW TOGGLE PA4
LDAA #7,00010000
EORA PORTA
STAA PORTA

;DO IT ALL OVER AGAIN
BRA LOOP1

7.3 Interrupts

If you study the above code, most of the time is spent waiting for the clock to
rollover (the loop at LOOP2). This is a lot like sitting in front of the clock and
watching and waiting for the clock to rollover. Or, for that matter, sitting in
front of a stove and watching and waiting for kettle to boil, or watching food
being cooked in a microwave oven. A better solution would be to go about ones
job and arrange matters so that one is told when an event occurs (the clock chimes,
the kettle whistles, the microwave oven sounds an alarm etc.). When we are told
that the event has occurred, we then take appropriate action (turn off the stove,
take food out of the oven etc.). Most of the HC11 interrupts work the same way.
In essence this is what happens:

1. When an event occurs, a flag is set. For example, the clock rollover sets the
TOF flag.

2. Associated with the flag is a masking bit. The name of the bit is the same
as the flag except the final F is replaced by I. The mask associated with TOF
is TOI.

(a) If the mask is zero, then nothing much happens. The event is ignored
by the interrupt processing structure.

7.3. INTERRUPTS

79

(b) However, if the mask is set, then request for service is generated.

i. The I bit in the CCR is a master disable switch. If this is set
(by using the command SEI), then the request for service does not
interrupt the computer and is hence ignored.

ii. However if I bit is cleared (by using the command CLI), then the

CPU is interrupted.

Note: It is extremely important that you have an SEI before any code
that can turn on an interrupt and and CLI after all relevant and required

initialization is performed.

3. When a CPU is interrupted, it stops its current task and starts the service.

4. When performing the service, you get a completely new set of registers.
So you can not assume that the registers will have any specific value. Also,
when the service terminates, the new set of registers is destroyed. So you can
not assume that the rest of the code can see what you stored in the register
as part of the service. In fact, the interrupted task would be oblivious to
the fact that a service was provided. The only way it can find out is if the
service modifies some memory location.

5. The location of the service that is associated with a particular interrupt is
defined by the hardware manufacturer, and is called the jump vector. This
would be in read only memory and can not be chanted. The operating
system, BUFFALOQO, sets the start of the service to a known location and
sets aside three bytes at that location. Your service will start with JMP
instruction to the actual code for the service. Your service must end with

the RTI instruction.

The address of services to three important interrupts is given in the following

table:

Interrupt

Service location

TOF
RTIF
OC2F

$00DO
$00EB
$00DC

6. Your service code should, as part of the service, turn off the flag that gen-
erated the interrupt. If not, the request for service will still be active and
will generate a new service request as soon as the current service end!

Here is a short checklist for what you should do:

1. In your main routine, enable an interrupt by turning on the associated mask.

80 CHAPTER 7. INTERRUPT PROCESSING

2. Write the service routine. As part of the service make sure you turn off the
flag that generated the interrupt.

3. Let HC11 know where to find the service. In other words, Link the service
to the request.

With this background, we will modify the square wave generator to use the
interrupt. Here is the complete code with some of the standard equates left out
(you need to have them at the top of the file!). You should compare this code with
the earlier one. In this code, the main program does nothing really interesting. It
just prints a series of Z’s to the screen

; Various defines go here ...
ORG $3000 don’t forget the $

ME FCC /Your name/
FCB 10
FCC /ECE 372/
FCB 10
FCC /Date the program was last changed/
FCB 10, 10, 4

ORG $2000 DONT FORGET THE $
LDX #ME
JSR OUTSTRG ; MAKE SURE YOU HAVE EQU FOR OUTSTRG

LOOP1

; Enable TOF interrupt by setting TOI (bit#7 in TMSK2)
SEI
LDAA #7,10000000
STAA TMSK2
CLI

; Now go about your business of printing Z’s
LDAA #°2Z

LOOP JSR OUTA
BRA LOOP

; End of main program

299999999 99999939339 93333993333I)

7.4. THE REAL TIME INTERRUPT 81

; INTERRUPT SERVICE
SERVICE

; TOGGLE PA4
LDAA #7,00010000
EORA PORTA
STAA PORTA

; TURN OFF THE FLAG!
LDAA #7,10000000
STAA TFLG2

; END WITH AN RTI
RTI

29999939 3993333333333 33333333333 IINIIIDINIDINDI)

; Connect the service to the interrupt ;

ORG $00DO ; $00DO WHERE THE SERVICE STARTS
JMP SERVICE ; JUMP TO WHERE THE SERVICE CODE ACTUALLY IS

How does this code differ from the previous one? We don’t wait for the clock
to rollover. Instead, the main program goes about its task (in this case not a
very interesting one!). Note that although the service routine uses the A register,
this does not affect the value the main routine has stored in the A register (the
character Z).

7.4 The Real time interrupt

The real time interrupt, RTI (not to be confused with the RTI instruction) acts
exactly like the timer overflow interrupt, except you can control the time between
interrupts using the last two bits (0 and 1) of PACTL at location $1026. If the
both the bits are set, the time between the interrupts is is 32.768 ms, i.e. same
as timer overflow. However, you can decrease the time between the interrupts
(increase the rate) by changing the last two bits as PACTL as shown below:

82

CHAPTER 7. INTERRUPT PROCESSING

Last two bits of PACTL | Time between interrupts
00 4.096 ms (244.1 Hz)

01 8.192 ms (122 Hz)

10 16.384 ms (61 Hz)

11 32.768 ms (30.5 Hz)

Thus if we want to use the RTI interrupt, we have to change the above code as
shown below. Note the crucial differences:

; Various defines go here ...

ME

LOOP1

ORG

FCC
FCB
FCC
FCB
FCC
FCB

ORG
LDX
JSR

$3000 don’t forget the $

/Your name/

10

/ECE 372/

10

/Date the program was last changed/
10, 10, 4

$2000 DONT FORGET THE $
#ME
OUTSTRG ; MAKE SURE YOU HAVE EQU FOR OUTSTRG

; Enable RTIF interrupt by setting RTII (bit#6 in TMSK2)

SEI

LDAA #7,01000000 <= This is different
STAA TMSK2

LDAA #7,00000011 <= THIS IS NEW
STAA PACTL

CLI

; Now go about your business of printing Z’s
LDAA #°Z

LOOP

JSR
BRA

OUTA
LOOP

; End of main program

7.4. THE REAL TIME INTERRUPT 83

2999999999999 9 9333392393399 33333))

; INTERRUPT SERVICE
SERVICE

; TOGGLE PA4
LDAA #7,00010000
EORA PORTA
STAA PORTA

; TURN OFF THE FLAG!
LDAA #,01000000 <= This is different
STAA TFLG2

; END WITH AN RTI
RTI

D3 20 3 2 3 30 3) 3333 IIIINDIIDIDIIDIIDINDIIDNDIINDNDIINDIN DN
; Connect the service to the interrupt ;

ORG $00EB ; $00EBO WHERE THE SERVICE STARTS
JMP SERVICE ; JUMP TO WHERE THE SERVICE CODE ACTUALLY IS

7.4.1 Exercises

1. Modify the above program to generate a 61 Hz square wave by setting the
RTT interrupt rate to 61 Hz.

2. After you made the modification, toggle PA4 every 61 interrupts (Hint, set
up a counter and initialize it to 61 in the main program. In the interrupt
service, decrement the counter. When the counter reaches zero, toggle the
pin and reset the counter back to 61). Verify that the signal you generate
is a 1 Hz square wave

3. Create a simple clock. In addition to toggling the pin, increment an 8-bit
variable called TIME. In the main loop, instead of printing Z’s, print the
variable using OUT1BSP.

84 CHAPTER 7. INTERRUPT PROCESSING

7.5 The output compare interrupt

The HC11 has 5 0Cx interrupts. These are like alarm clocks. You set a desired
‘alarm’ time and when the clock matches the alarm setting, the OCxF flag will be
turned on and could then generate a request for service. Note that if you do not
change the alarm setting, you will still get an interrupt every 32.768 ms. However,
having the alarm gives you greater flexibility. First a code that does not change
the alarm setting and hence generates 30.5 Hz square wave.

; Various defines go here ...
ORG $3000 don’t forget the $

ME FCC /Your name/
FCB 10
FCC /ECE 372/
FCB 10
FCC /Date the program was last changed/
FCB 10, 10, 4

ORG $2000 DONT FORGET THE $
LDX #ME
JSR OUTSTRG ; MAKE SURE YOU HAVE EQU FOR OUTSTRG

LOOP1

; Enable 0C2 interrupt by setting 0C2I (bit#6 in TMSK1)
SEI
LDAA #7,01000000 <= This is different
STAA TMSK1

CLI

; Now go about your business of printing Z’s
LDAA #°7°

LOOP JSR OUTA
BRA LOOP

; End of main program

299999999 933999393333 9339333333333)I)

; INTERRUPT SERVICE

7.5. THE OUTPUT COMPARE INTERRUPT 85

SERVICE

; TOGGLE PA4
LDAA #7,00010000
EORA PORTA
STAA PORTA

; TURN OFF THE FLAG!
LDAA #7,01000000 <= This is different
STAA TFLG1

; END WITH AN RTI
RTI

3999939999939 3993333933339 3333333IININ)I)I)

; Connect the service to the interrupt ;

ORG $00DC ; $00DC WHERE THE SERVICE STARTS
JMP SERVICE ; JUMP TO WHERE THE SERVICE CODE ACTUALLY IS

Verify that the above code also generates a 30.5 Hz square wave. Now we can
reset the alarm to get a different frequency. For example, if we modify the service
routine as follows, we will get an interrupt every 2000 clock ticks or every 1 ms
for a 1 K Hz signal.

299999 3 99 9333993333333 IIDIDIDINDINDINDIDID

; INTERRUPT SERVICE
SERVICE

; TOGGLE PA4
LDAA #7,00010000
EORA PORTA
STAA PORTA

; TURN OFF THE FLAG!
LDAA #7,01000000
STAA TFLG1

86 CHAPTER 7. INTERRUPT PROCESSING

;set the next interrupt to occur 2000 clock ticks after this

LDD TOC2 <= This is different
ADDD #2000
STD TOC2 <=

; END WITH AN RTI
RTI

Chapter 8

Signal Generation

8.1 Objective

To become familiar with generating square waves.

8.2 Background

In an earlier lab, you had to generate a square wave signal using various interrupts.
This lab builds on this. For a general square wave signal, we define the on-time,
Ton, the off-time, T, ¢, and the period T' as shown in the figure 7.1. The goal of
the lab is to generate such square waves. The ratio TOTD is called the duty cycle
and is expressed as a percentage. When dealing with time it is convenient to talk
in terms of clock ticks. The HC11 has a 2 MHz e-clock, or you have 2 x 10° ticks
per second. Hence 1 clock tick is 0.5 microseconds.

5 Volts

f— — e ——

Ton Tog

0 Volts

T =Ton + Tog

Figure 8.1: 0-5 volt square wave

87

88 CHAPTER 8. SIGNAL GENERATION

8.3 Variable frequency signal generator

In this experiment, we will generate a square wave with frequency selected by the
user. We will fix the duty cycle at 25%. To get started, we will first write the
code for generating a single tone.

8.4 500 Hz tone generator
Here is a typical calculation to generate a 500 Hz signal:

T = 1/500=2x 1073 seconds = (2 x 107?) x (2 x 10%) = 4000 ticks
Ton = 4000/4 = 1000 ticks

Tog = 4000 — 1000 = 3000 ticks

To generate a 50 Hz, 25% duty cycle signal we use two variables called ONTIME and
OFFTIME. Every time we get an 0C2 interrupt, we toggle the pin PA4 as before. We
check to see if we turned the pin ON or OFF. If we turned it on, then we schedule
the next interrupt to occur ONTIME ticks later. However, If we turned it off, then
we schedule the next interrupt to occur OFFTIME ticks later. Thus, the earlier
code that was used to generate a square wave is modified as follows:

; Various defines go here ...
ORG $3000 don’t forget the $

ME FCC /Your name/
FCB 10
FCC /ECE 372/
FCB 10
FCC /Date the program was last changed/
FCB 10, 10, 4

ONTIME RMB 2
OFFTIME RMB 2

ORG $2000 DONT FORGET THE $
LDX #ME
JSR OUTSTRG ; MAKE SURE YOU HAVE EQU FOR OQUTSTRG

; Enable 0C2 interrupt by setting 0C2I (bit#6 in TMSK1)
; ALSO PERFORM ALL INITIALIZATION BETWEEN SEI/CLI

8.4. 500 HZ TONE GENERATOR

; Now g

LOOP

; End o

33990

; INTER

SERVICE

WENTHIG

I

SEI

LDD #1000
STD ONTIME
LDD #3000
STD OFFTIME

LDAA #701000000
STAA TMSK1

CLI

o about your business of printing Z’s
LDAA #°7°
JSR OUTA
BRA LOOP

f main program

299999 39993 339933333333 INDINDIDIDID

RUPT SERVICE

TOGGLE PA4
LDAA #7,00010000
EORA PORTA
STAA PORTA

TEST TO SEE IF THE PIN WENT HIGH
ANDA #7,00010000
BNE WENTHIGH

NO, PIN WENT LOW. LOAD D WITH OFFTIME
LDD OFFTIME
BRA REST

H
PIN WENT HIGH. LOAD D WITH ONTIME
LDD ONTIME

89

90 CHAPTER 8. SIGNAL GENERATION

REST
ADDD T0C2
STD TOC2 ; BUMP ALARM SETTING

; TURN OFF THE FLAG!
LDAA #7,01000000
STAA TFLG1

RTI

; Connect the service to the interrupt ;
ORG $00DC ; $00DC WHERE THE SERVICE STARTS
JMP SERVICE ; JUMP TO WHERE THE SERVICE CODE ACTUALLY IS

Assemble and run the above program. Connect PA4 to an oscilloscope and verify
that the duty cycle and the frequency are correct.

8.5 Variable frequency generator

We now modify the above code to create a variable frequency generator. The
program will monitor the keyboard and depending on the number the user enters,
it will change the frequency as shown in the table below:

Number | Frequency Period | Period | On time | Off time
seconds ticks ticks ticks

0 440 | 0.002273 4545 1136 3409
1 466 | 0.002145 4290 1073 3217
2 494 1 0.002025 4050 1013 3037
3 523 | 0.001911 3822 956 2866
4 554 | 0.001804 3608 902 2706
3 587 | 0.001703 3405 851 2554
6 622 | 0.001607 3214 804 2410
7 659 | 0.001517 3034 759 2275
8 698 | 0.001432 2863 716 2147
9 740 | 0.001351 2703 676 2027

As a programmer we are only interested in the on-time and off-time. We use FDB
to create two tables in the data section as shown below:

ONTIMETBL
FDB 1136 ,1073, 1013, 956, 902

8.5. VARIABLE FREQUENCY GENERATOR 91

FDB 851, 804, 759, 716, 676
OFFTIMETBL

FDB 3409, 3217, 3037, 2866, 2706

FDB 2554, 2410, 2275, 2147, 2027

Note that it makes sense to enter numbers in decimal notation. Each entry in the
table requires two bytes (we use 16 bit numbers to measure time since the HC11
clock is a 16 bit quantity). Hence we use FDB instead of FCB. Note that this also
means that we have to index through memory in steps of two bytes. Suppose
we want to access the element #4 in ONTIMETBL and the value #4 is in the
B register (the number #4 is used only as an illustration. In the application the
register B will have the value). Then we have to access the element we have to
write

LDX #ONTIMETBL

ABX
ABX ; NEED TWO ABX’S
7?77 0,X

We can now modify the single tone generator to a programmable square wave
generator by making the following changes:

Before After
LDD #1000 LDX #ONTIMETBL
STD ONTIME LDY #OFFTIMETBL
LDD #3000 LDD 0,X
STD OFFTIME STD ONTIME

LDD 0,Y

STD OFFTIME

92 CHAPTER 8. SIGNAL GENERATION

Before After

LDAA #'7° | | LOOP

LOOP JSR OUTA JSR INPUT
BRA LOOP TSTA
BEQ LOOP
ANDA #$0F

TAB ; B HAS INDEX

LDX #ONTIMETBL
ABX
ABX

LDY #OFFTIMETBL
ABY
ABY

LDD 0,X
STD ONTIME
LDD 0,Y

STD OFFTIME

BRA LOOP

8.6 Exercises

1. Make the changes shown above and run the program. Connect PA4 to an
oscilloscope. Press any of the keys 0 to 9 and verify that the frequency
changes.

2. Change the program so that when you press any of the keys 0 to 9, the
frequency should be fixed at 100 Hz but the duty cycle changes. Pick 10
different duty cycles. Also, connect the output pin to a digital voltmeter.
How does the voltage change with the duty cycle?

Chapter 9

Analog to Digital Conversion

9.1 Objective

To become familiar with Analog to Digital Conversion.

9.2 Background

In this lab you will learn how to use the built in analog to digital converter. In
an earlier lab you learnt how to read a digital input on one of the port A pins.
The input was either a 1 or a 0 depending on whether the pin voltage was above
or below 2.5 volts. In this lab you will learn how to measure a voltage more
precisely. HC11 has a built in analog to digital convertor that will measure an
analog voltage between a lower limit and a higher limit ! and convert it to a an
8-bit value. The converted value would be zero if the voltage that is measured is
equal to the lower limit and the value will be 255 (biggest 8 bit number) when the
voltage is at the upper limit. For voltages in between, the converted value would
be linearly related, with the value rounded down to the nearest integer. Thus the
converted value is given by the formula
V —VRL
b= {255 VRH — VRLJ

Tt is important that you do not exceed these limits. In this experiment you will be using
the variable voltage supply that is available in PE7 pin. The voltage in this pin will be within
the acceptable limits. However, if you try to measure any voltage generated by some external
device, it is your responsibility to ensure that you do not exceed these limits.

93

94 CHAPTER 9. ANALOG TO DIGITAL CONVERSION

where
D The converted digital value
V Measured voltage
VRL Lower limit voltage
VRH Upper limit voltage
|-] rounded down value

Note: If the input voltage is below the lower limit, then the converted value would
be zero and if the input voltage is above the upper limit, the converted value would
be 255. Again, it is not a good idea to go outside the two limits.

9.3 Electrical Connections

1. To measure any analog voltage, you first need to provide the lower and upper
limit. These are connected to the HC11 to the pins labelled V RL and V RH.
Connect VRL to ground (zero volts) and VRH to five volts. Double check
both these connection before applying power!

2. Now you can measure the analog voltage connected to any of the PORT
E pins. Connect the voltage you want to measure to one of the PORT E
pins. In this experiment, we will measure the voltage available at PE7? and
measure it using pin #3 of PORT E. You can now change the voltage using the
potentiometer on the board. Do not use the power supply in the electronics
lab as the test voltage. You can accidentally exceed the five volt limit.

9.4 Decisions, decisions ...

9.4.1 Multiplexing

HC11 provides several options for analog to digital conversions. Every time you
perform a conversion, HC11 will actually perform four conversions in sequence,
and store the converted values in ADR1, ADR2,ADR3,and ADR4 at addresses $1031 to
$1031. You as a programmer can decide how you want to use the four measure-
ments. You can take four measurements of the same input pin. These measure-
ments will be taken 32 E-clock ticks apart or 16 microseconds apart on a standard
HC11 running 2 MHz clock. You can expect your for readings to be almost equal.
This is the non-multiplezed mode. In the multiplexed mode, the four measure-
ments are performed on four different PORT E pins. Here you can either pick the

2This instruction is specifically for FOX11 board. For other boards, connect a 10K poten-
tiometer between five volts and ground. Connect the wiper of the potentiometer to pin #3 of
PORT E.

9.5. PROCESS OF TAKING A MEASUREMENT 95

pins PEO-PE3 or the pins PE4-PE7. If you chose the first the group of pins then
the voltage in PEO will be converted and stored in ADR1, the voltage in PE1 will
be converted and stored in ADR2, etc. If you chose the second group of pins then
the voltage in PE4 will be converted and stored in ADR1, the voltage in PE5 will be
converted and stored in ADR2, etc. Note that if you want to measure more than
4 pins then the only way to do it will be to make two sets measurements, one for
for PEO-PE3 and the other for PE4-PE7.

9.4.2 Scanning

To take a measurement, you have to initiate the conversion. Once it is initiated,
HC11 will take 128 E-clock ticks to complete all the four conversion and fill ADR1,
ADR2,ADR3,and ADR4. In the non-scanning mode, the conversion process stops.
In the scanning mode, once the converted data is stored in ADR4, HCI11 will
automatically initiate the next round of conversions to fill ADR1, ADR2,ADR3,and
ADR4. In the scanning mode, ADR1, ADR2,ADR3,and ADR4 will always have the most
up to date value of the input voltage. However, scanning consumes more power,
and can be wasteful if you don’t need data at a fast rate.

9.5 Process of taking a measurement

9.5.1 Turning on (powering up) the convetor

Before you can take any measurements, you have to turn on the A/D convertor.
The convertor is normally off. You turn it on by setting bit #7 of OPTION which
is at location $1039. After power up you need to wait 100 microseconds before
you can us the convertor. 100 microseconds is 200 E-clock ticks. You can put
in a delay of 100 microseconds with this following do nothing counting loop (40
times around the loop with each pass taking 5 clock cycles):

LDAA #40
LT

DECA

BNE LT

Note that you need to do this only once in your program.

9.5.2 Initiating a conversion

You initiate a conversion by writing to ADCTL at address $1030. What you write
to the location depends on what choices you make. Bit #5 is the SCAN bit. Set

96 CHAPTER 9. ANALOG TO DIGITAL CONVERSION

this to 1 if you want scanning; or else, set it to zero. Bit #4 is the MULT bit. Set
this to 1 if you want multiplexing; or else, set it to zero. Bits #3-#0 specify which
PORT E pin you want to measure. In the multiplexed mode, you can specify any
of the four pins that are part of the multiplexed group.

9.5.3 Making sure you have valid data

Once you have initiated the conversion, you have to make sure you that you have
valid data. HC11 will turn on bit #7 of ADCTL once all four conversions are
complete. It is your responsibility to check this bit before reading the converted
values.

9.6 A trial dry run

We will first do some analog to digital conversion without writing any programs.

1. Make the appropriate electrical connections. Make sure that you connect
PE7 to PE3, VRL to ground and 5V.

2. First turn on the convertor by storing $80 to location $1039. You do this
with the memory modify command: MM 1039 and entering the value 80.

3. Since it is going to take lot more than 100 microseconds for you to type
anything, there is no need for any waiting for the A/D to warm up. Now we
will configure the A /D to be in non-multiplexed, scan mode to measure PE3.
We do this by entering the bit pattern 00100011/ in location $1030. The
hexadecimal representation for the bit pattern is $23, and we need this for
memory modify command. Use the command MM 1030 and enter the value
23.

4. Adjust the input voltage so that it is one volt. use the command
md 1030 1030

and write down the first five numbers. Note that the contents of location
$1030 is A3 and not 23. This because HC11 will turn the 7th bit at location
$1030 when the conversion is completed. The next four values should be
approximately 255/5 or 51 in decimal or 33 in hex. Verify that the next
four values are approximately 33.

5. Change the input voltage. Do a memory dump to see what the converted
values are. Since we configured the analog to digital convertor to be in the

9.7. A SIMPLE DIGITAL VOLTMETER

scanning mode, there is no need to issue any new commands. Measure the
input voltage, V and compute @ Also note down the values in locations
$1031-$1034. Fill in the following table for different input voltages and

verify your results.

Measured L255 (%)J
Voltage (V) | In Decimal

1255 (%)

In Hex

$1031

Memory dump

$1032

$103

$1034

9.7 A simple digital voltmeter

We can write a simple voltmeter program to measure voltages in the zero to 5
volts range. Since the output is intended for human eyes, we want the output
to be in decimal. We will use one decimal accuracy so that the numbers will be
between 0 and 50 (decivolts) and we will put a decimal point between the two
digits. To convert the digital values to decivolts, we need to multiply by 50 and
then divide by 255. The steps are as follows:

1. Turn the A/D on and wait the required 100 microseconds

LDAA #7,10000000
STAA OPTION

LDAA #40
LT

DECA

BNE LT

2. Initiate conversion with SCAN=1, MULT=0, PIN=3

LDAA #700100011 *SCAN=1, MULT=0, PIN = 011 (PE3)

STAA ADCTL

3. Make sure that the conversion is complete

WCCF
LDAA ADCTL
ANDA #7,10000000
BEQ WCCF

98 CHAPTER 9. ANALOG TO DIGITAL CONVERSION

4. Take a reading (this is easy!)
LDAA ADR1
5. Convert it to decivolts by multiplying by 50 and then dividing by 255

LDAB #50
MUL
LDX #255
IDIV

The quotient as a result of division is in the X register. This is an awkward
destination as most of the functions expect the value on the A register. We
transfer from X to A in two steps.. first from X to D. Now the result is in
the [A—B| pair and since the value is less than 255 (the value is between 0
and 50), the result is in the B register. We transfer the value from B to A.

XGDX * D <-> X
TBA * B -> A

6. Print the value in decimal We can now convert the data to BCD format and
then print the left and the right digit.

JSR HEX2BCD

PSHA *SAVE IT FOR LATER USE
JSR OUTLHLF

LDAA #°.
JSR OUTA

PULA *GET THE SAVED VALUE
JSR OUTRHLF

JSR OUTCRLF

The code to convert to BCD was discussed in an earlier section and is
produced here for reference:

HEX2BCD
PSHB

9.7. A SIMPLE DIGITAL VOLTMETER

TAB *COPY A TO B
H2B.LT
CMPB #10 *IS B < 10

BLO H2B.DONE *IF S0 WE ARE DONE

SUBB #10 *B <- B-10
ADDA #6 *A <- A+6
BRA H2B.LT

H2B.DONE
PULB
RTS

7. We can go back and repeat the steps (the first need not be performed more
than once). It is convenient to check the keyboard and go back only if the

user has not pressed the ESC key (code 27).

The complete program to achieve these steps is given below

OUTLHLF EQU $FFB2
OUTRHLF EQU $FFB5
OUTCRLF EQU $FFC4
INPUT EQU $FFAC
OUTA EQU $FFBS8

OPTION EQU $1039
ADCTL EQU $1030
ADR1 EQU $1031

ORG $C000

;STEP 1

;TURN A/D ON
LDAA #7,10000000
STAA OPTION

LDAA #40
LT

DECA

BNE LT

100 CHAPTER 9. ANALOG TO DIGITAL CONVERSION

; STEP 2

; INITIATE CONVERSION
LDAA #7,00100011 *SCAN=1, MULT=0, PIN = 011 (PE3)
STAA ADCTL

;MAIN LOOP
LOOP

; STEP 3
; WAIT FOR CCF

WCCF
LDAA ADCTL
ANDA #7,10000000
BEQ WCCF

;STEP 4
; GET THE CONVERTED VALUE

LDAA ADR1 *ANY ADRx IS OK

;STEP 5
; CONVERT TO DECIVOLTS

LDAB #50
MUL
LDX #255
IDIV
; GET THE RESULT IN A REGISTER

XGDX * D <-> X
TBA *x B -> A

;PRINTIT
JSR HEX2BCD

PSHA *SAVE IT FOR LATER USE

9.7. A SIMPLE DIGITAL VOLTMETER 101

JSR OUTLHLF

LDAA #’.
JSR OUTA

PULA *GET THE SAVED VALUE
JSR OUTRHLF

JSR OUTCRLF
; BACK FOR MORE UNLESS USER TYPES AN ESCAPE
JSR INPUT
CMPA #27
BNE LOOP

SWI

;FUNCTION TO CONVERT HEX TO BCD

)

HEX2BCD
PSHB
TAB *COPY A TO B
H2B.LT
CMPB #10 *IS B < 10

BLO H2B.DONE *IF SO WE ARE DONE

SUBB #10 *B <- B-10
ADDA #6 *A <- A+6
BRA H2B.LT
H2B.DONE
PULB
RTS

