
Lecture 7 

I. Laplace transformation 

 The Laplace transformation is used when we have some initial conditions in a linear network. The 

main equations for the Laplace transformations can be derived from the generalised Fourier transformation 

introduced in Lecture 4. Since the Laplace transformation is applied only along the positive semi-axis 0x , 

we need just the “+” generalised Fourier transformations – direct and inverse: 
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where 0a  and || a  is sufficiently large to guarantee the convergence of (1) and (2). Introducing the new 

variable sip  , we obtain:  
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where )(sf
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 is the Laplace image and Eq. (4) is the inverse Laplace transformation. For the Laplace 

transformation, we have the following useful properties: 
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 Since we will consider only stable networks, the inverse Laplace transformation (4) can be formally 

expressed through the inverse Fourier transformation:  
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where p  is the new integration variable. For the analytical calculation of 
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use Eqs. (4.52)(4.55).  

 

II. Stationary linear networks with initial conditions  

 In this section, instead of the general variable x  we will consider the time variable t . Then, the 

initial conditions mean that the output parameter )(tVout  is subjected to some additional conditions at the 

time moment 0t . (All the explanations will be conducted for a scalar network, but the corresponding 

generalisations for a vector network can be easily obtained) In turn, the initial conditions by themselves can 

be represented in the form of some linear (differential, integral, or integro-differential) operators iD  acting 

on )(tVout : itouti CtV 
0

)(D , where i  is the integer index and iC  are some real or complex constants. 

The initial conditions have to define the system behaviour for 0t : in compliance with the classical 

deterministic principle. For example, for a massive material point moving along the real axis, the initial 

conditions are its position and velocity at 0t : 001 )0()( xxtx
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Actually, the initial conditions can be applied at any time moment, and the time moment 0t  has been 

chosen only for convenience. 

 If a linear system “is forced” to satisfy the initial conditions, its behaviour or “history” before 0t  

can be completely ignored when we consider 0t . In this case, the convolution integral can be rewritten in 

the following form: 
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where t  is the current time, )(tF  is the kernel of integral operator, )(tVin  is the input parameter, and )(tVout  

is the output parameter. Changing the variable qts  , the integral in (8) can be rewritten in the following 

form: 
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However, for non-zero initial conditions, these convolutions cannot describe all the system features since the 

integrals will be zero at 0t . Therefore, we have to add some additional terms to Eqs. (8) and (9) to satisfy 

the initial conditions. The corresponding technique will be explained by the example of an ordinary 

differential equation of the order n  with the constant coefficients: 
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where 

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)(  is the symbol of differential operator (polynomial), )(tA  is a function defined only 

for 0t , and ka  are some constant coefficients. This equation can be supplied with the initial conditions: 
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where ib  are some constants. Without initial conditions, Eq. (10) can be immediately solved using the 

operational calculus developed in Lecture 5:  
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 Applying the direct Laplace transformation to Eq. (10) and using the property (6), we obtain: 
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Solving (15) with respect to )(sf


, we obtain: 
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Applying the inverse Laplace transformation to Eq. (18) and using Eq. (7), we obtain: 
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Using Eq. (12) with 0)0( tA , we can rewrite Eq. (19) in the following form: 
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Since the order of each polynomial )(ˆ iPk  is less than the order of )(ˆ iP , the inverse Fourier 

transformations in Eq. (20) will be classical, and hence it can be calculated using the residues (see (4.53) and 

(4.54)):  
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Using Eqs. (20),(21), we finally obtain: 
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mz  are zeros of the polynomial )(ˆ izP  

From Eq. (22) we can see that the influence of the initial conditions degrades exponentially with the time. 

After the certain “characteristic” time, the system will completely forget about its initial conditions and its 

behaviour will be synchronised with the external stimulus )0( tA . So, the initial conditions are important 

only during the characteristic time.  

 We have derived the formula for the Fourier transformation from the ratio of any two polynomials 

)(Q  and )(H , if the order of )(Q  is less than the order of )(H : 
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If the order of )(Q  is the same or larger than the order of )(H , we have to extract the constant or 

growing part from the ratio, the Fourier transformation from which must be calculated as the generalised one 

(see (4.53)).  

Let us demonstrate the use of Eq. (22): 

a) RC circuit 
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Here, R  (resistor), C  (capacitor), and )(tVin  (generator) are connected in series, CV  is the voltage across 

the capacitor, and 0V  is the initial voltage. Then: 
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For RCt  , the system will completely forget about the initial condition 0)0( VVC  .  

b) Damped oscillator 
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Here, m  is the mass, g  is the damping coefficient, k  is the Hook coefficient, )(tA  is the external force, 0x  

is the initial position, and 0v  is the initial velocity. Then: 

kigzmzizP  2)(ˆ  

0011 )(ˆ gxbaizP   

  )()()(ˆ
000120212

2

1

11
22 zixvmizbbaizbababziaizP

m

mk
mm  






 






























2

2

2

2

2

1

21

21

42

42

))((

1

)(ˆ

1

))((0)(ˆ

m

g

m

k

m

g
iz

m

g

m

k

m

g
iz

zzzzmizP

zzzzmizP

 (two poles) 

mkg 4  is the ringing regime  
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mkg 4  is the overdamped regime  
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It is interesting to note that in the overdamped regime we will have the two different relaxation times: 
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Below, we will consider only the ringing regime. 
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Finally, we obtain for the ringing regime:  
















































































 

2

2

2

00
2

2

0

0
2

2

2

4
sin

2
exp

4

)2(

4
cos

2
exp

)(
4

)(sin)(
2

exp

4

2
)(

m

g

m

k
tt

m

g

gmk

mvgx

m

g

m

k
tt

m

g
x

dssA
m

g

m

k
stst

m

g

gmk

tx

t

 (27) 
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c) Linear mechanical system with two degrees of freedom (vector linear network) 

 

Here, 3,2,1vf  are the damping parameters (due to a friction or viscosity), 2,1K  are the Hook coefficients 

(springs), and 2,1M  are the masses. In accordance with Newton’s law:  
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In Eq. (28), all the forces are grouped at the right to demonstrate their physical meaning: 
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 These “self” Hook’s forces will be opposite to )(tf , if the direction of displacements 

)(2,1 tx  coincides with the direction of )(tf . This is an obvious physical fact. 
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 These “mutual” Hook’s forces depend on the relative displacement 
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To define the proper signs for these forces, let us consider the situation when both the displacements )(2,1 tx  

have the same direction as )(tf , but )()( 12 txtx  . In this case, the spring 2K  will pull forward the mass 

1M  ( 0)()( 12  txtx ) and back the mass 2M  ( 0)()( 21  txtx ). Here, “forward” means in the direction of 

)(tf , and “back” means in the opposite direction.  
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  These “self” friction forces will be opposite to )(tf , if the direction of 

velocities 
dt

tdx )(2,1
 coincides with the direction of )(tf . This is an obvious physical fact. 

The system (28) can be rewritten in the following equivalent form:  
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It can be supplied with the initial conditions:  
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Applying the direct Laplace transformation (3) and using Eq. (6), we obtain: 
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For this system of algebraic equations, we can introduce the following polynomials of the variable s : 
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This system can be easily solved: 
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Similar to Eq. (13), we can introduce the following time domain transfer functions used in the convolutions 

with the external force )(tf : 
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where mz  are zeros of the denominator )(ˆ)(ˆ)(ˆ 2 izCizBizA  . Finally, we obtain: 
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These solutions are very complicated, since we have to find zeros of )(ˆ)(ˆ)(ˆ 2 izCizBizA  . However, it is 

still possible to do analytically (!) since the order of this polynomial is 4. If the initial conditions are zero, we 

obtain: 
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III. Rotational mechanical systems 

The following simple model (see the Figure below) will help us to derive the 

main equations for a rotational solid. The mass m  is fastened on the arm mL  

which can rotate around the centre. The external force )(tf  is applied at right 

angle to this arm at some distance fL  ( fL  may be larger or smaller than mL ):  

 

For the external and inertia forces, we can write the moment equality for each moment of time t : 

)()( tmaLtfL mf             (30) 

Here, )(
)(

)( tL
dt

td
Ltv mm 


  is the linear velocity, )(t  is the angular velocity, and 

dt

td
L

dt

td
L

dt

tdv
ta mm

)()()(
)(

2

2 
  is the angular acceleration. Therefore, Eq. (30) can be rewritten in the 

following form: 
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By the definition, )(tfL f  is the scalar torque )(tT  (NewtonMeter; SI units) and mLm
2

 (MassMeter
2
; SI 

utins) is the moment of inertia J  (constant!). Finally, we obtain: 

dt
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           (32) 

 The mechanical power )(tW  (Joule/Second or Watt; SI units) is calculated as the work produced by 

the external force per the unit time. Using our simple mechanical model, we can use the infinitesimal 

analysis to calculate )(tW : 
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 is the mechanical power. 
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f (t)

Lf

Inertia force



Then, using Taylor’s expansions we obtain: 

 

)()()(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)()(
)(

)(
)(

)(

lim
)()()()(

lim)(
00

tTtt
dt

tdT
tT

dt

td
t

dt

tdT
tf

dt

td
t

dt

tdf
L

t

ttft
dt

td
tt

dt

tdf
tfL

t

ttfttttfL
tW

f

f

t

f

t





























































  

 )()()()()(
)(

)( ttT
dt

d
tTtt

dt

tdT
tW           (33) 

If consttT )( , then TttW )()(  . 
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d
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t
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t

t

    is the mechanical work produced 

during the time interval ],[ 21 tt .  

 In the general case, the mass and the external force may be distributed (non-point force and mass), 

but Eqs. (32),(33) remain the same. For the distributed mass and external force, )(tT  and J  must be 

calculated with respect to the rotation axis: 


V

dVzyxRzyxJ ),,(),,( 2           (34) 

  

V

dVzyxtzyxtT ),,;()],,,([)( fRn         (35) 

Here, dxdydzdV   is the elementary volume, ),,( zyx  is the mass volume density, V  is the volume of 

solid, n  is the unit vector directed along the rotation axis, ),,( zyxR  is the radius-vector which is 

perpendicular to the rotation axis and directed from this axis to the integration point inside V , where the 

vector force ),,;( zyxtf  is applied, |),,(|),,( zyxzyxR R  is the module of ),,( zyxR , [ __ ] is the vector 

product of two vectors, ( _,_ ) is the scalar product of two vector. In (35), we have the mixed product of 

three vectors. Eq. (35) shows that a vector force ),,;( zyxtf  applied to the solid produces a torque only if it 

has a component along the vector )],,([ zyxRn , i.e. perpendicular to the rotation plane. All other 

components will not contribute to the torque. 

For Eq. (32), we can also introduce the additional frictional 
dt

td
D

)(
 and elastic )(tK  torques (they have 

the same dimension as T ): 
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Eq. (36) can be supplied with the initial conditions: 
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Since Eqs. (35) and (36) are similar to Eq. (26), we can use the same analytical tool.  

 Gears transform both the speed of rotation and the applied torque. For two gears (1,2) with the radius 

2,1r  and the number of teeth 2,1N  respectively, we have the following ratios:  
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Therefore, a gear mechanism can be considered as a linear network, as shown in the Figures below. 

 

 

For a rotational solid attached to the second gear, we have (see (a) in the Figure below):  
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tTtT   into Eq. (36), we obtain (see (b),(c) in the Figure below): 
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For a gear train, the equivalent gear ratio is the product of the individual gear ratios, as shown in the Figure 

below. 

 

 

IV. Electromechanical systems 

 Any electrical motor together with a mechanical system attached constitute an electromechanical 

system. For such system, electrical and mechanical properties must be considered together since they affect 

each other. In this section, we will study the voltage-controlled DC motor. The driving magnetic field in this 

motor is induced by stationary permanent magnets or electromagnets. This motionless part of the motor is 

called the stator. The armature coils, which are assembled on the rotor (rotating part), are connected through 

the commutator and brushes to a voltage source.  



 

 The motor torque )(tT  is developed due to the interaction of the armature current )(tIa  with the 

magnetic field induced by the stator: 

)()( tIKtT at            (41) 

where tK  is the proportionality coefficient that depends linearly on the stator magnetic field (which is 

assumed to be uniform in the stator-to-rotor gap) and also on the design of armature coils. If the stator is 

made of electromagnets, tK  will depend on the stator current )(tI s : 

)()( tIKtK stst             (42) 

where tsK  is the proportionality constant which is defined by the design of stator and rotor.  

 The armature and stator coils by themselves are characterised by the inductances aL  and sL , and the 

resistances aR  and sR , respectively. In the armature circuit, we also have to take into account the so-called 

back e.m.f. )(tVb , which is induced in the rotating armature coils by the stator magnetic field (due to 

Faraday’s law). This back e.m.f. is directly proportional to the speed of rotation: 

dt
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KtV bb
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
            (43) 

where bK  is the proportionality coefficient that depends linearly on the stator magnetic field (which is 

assumed to be uniform in the stator-to-rotor gap) and also on the design of armature coils. If the stator is 

made of electromagnets, bK  will depend on the stator current )(tI s : 

)()( tIKtK sbsb             (44) 



where bsK  is the proportionality constant which is defined by the design of stator and rotor. 

 The simplest feeding scheme is realised when the armature and stator coils are connected to the 

different voltage sources, as shown in the figure below. In this case, tK  and bK  are constants, and we have 

the following system of differential equations for the armature current )(tIa  and the rotation angle )(t : 
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)()( tIKtT at            (47) 

 

 We will consider the system (45)(47) with zero initial conditions. There: 
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KKK La  is the total elastic parameter. Here, we assume that a 

rotational external load can be connected to the motor through a reduction gear, as shown in the figure 

below.  
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Applying the direct Laplace transformation to Eqs. (45)(47), we obtain (zero initial conditions!): 

)()()()( sVssKsIsLsIR abaaaa


          (48) 

)()()()(2 sTsKsDssJs


           (49) 

)()( sIKsT at


            (50) 

Solving Eqs. (48)(47) with respect to )(sIa
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For further analysis, we will neglect K : 

)()(

)(
)()(

2
btaaaa

aa
KKDRsDLJRsJL

DJs
sVsI







      (53) 

))()((
)()(

2
btaaaa

t
a

KKDRsDLJRsJLs

K
sVs





       (54) 

Let us introduce the following two polynomials: 
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Then, (49) and (50) can be rewritten as: 
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Calculating the inverse Laplace transformation from (57),(58) with the use of Eqs. (12)(14) and (22), we 

obtain (zero initial conditions!): 
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Putting Eqs. (61),(62) into Eqs. (59),(60), we finally obtain: 
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 If in Eq. (45) neglect aL  (a quite reasonable assumption for a practical DC motor), then we obtain: 
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Excluding the current 
t

a
K

tT
tI

)(
)(  , we obtain: 
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Eq. (66) is a straight line, )(tT  vs. )(t , as shown in the figure below. If aV  is a constant voltage, after the 

certain characteristic time, we obtain a steady-state rotation. For this steady-state rotation, we can use the 

same Eq. (66). 
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From Eq. (67),(68) we can make some important 

conclusions. First of all, the angular velocity is directly 

proportional to aV , and this principle is used to 

regulate  . Since bK  is directly proportional to the 

stator field, a larger stator field will reduce the rotor 

steady-state velocity. This conclusion is quite 

unexpected! However, since tK  is also directly 

proportional to the stator field, a larger stator field will 

increase the rotor torque, and hence its acceleration 

under a load. All these features are shown in the 

Figure at the left. 

 

 Above, we have considered the feeding scheme where the stator and rotor are connected to the 

different voltage sources. There are possible other feeding connections, where (i) the stator is connected in 

series with the rotor or (ii) the stator is connected in parallel with the rotor, as shown in the Figures below. 

These feeding connections will result in (i) a non-linear network and (ii) a non-stationary linear network, 

respectively. Unfortunately, these networks cannot be analysed by the analytical methods developed in our 

previous Lectures.  

 

(non-linear network) 
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V. Closed-loop speed control of a DC motor 

 A simple closed-loop speed control of a DC motor is shown in the Figure below. The tachometer delivers a 

signal )(tVT  to one input of the differential amplifier and the DC reference voltage refV  is applied to the other input. 

The differential signal ))(( tVV Tref   is used to maintain the rotation at constant speed. The output voltage of the 

differential amplifier is passed through the power amplifier to allow a bigger driving current for the motor armature. 

For further analysis, we will assume that the power amplifier is a current source, i.e. it provides the armature current 

)(tIa . 

 The operation of the motor can be determined from the combination of the individual transfer functions 

written in the s-representation (an analog of the frequency domain for the Laplace transformation). The transfer 

functions of the differential amplifier dG , the power amplifier aG , and the tachometer TG  are assumed to be 

constant: 
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where refV  is the DC reference voltage that defines the speed of rotation, 
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Laplace image of the DC reference voltage, and )(sVT
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 is the Laplace image of the tachometer voltage output, )(sVd
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is the Laplace image of the differential voltage output, )(sIa


 is the Laplace image of the armature current, and )(s


 

is the Laplace image of the angular velocity.  
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From Eqs. (53) and (54), we obtain: 
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 (where we have taken into account 0)0(  ), using Eq. (73) we can 

write the motor transfer function )(sG


: 
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Let us remind that the armature current is provided by the power amplifier which is a current source. The 

closed-loop signal flow for our network is shown in the Figure below: 



 

Using this signal flow graph, we obtain:  
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Therefore, we have derived the transfer function (Reference signal  angular velocity) of the closed-loop 

network: 
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Putting Eq. (74) into Eq. (76), we finally obtain: 
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For the system stability, the only zero 
J
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located in the upper complex half plain, i.e. 0
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GGGKD daTt . This zero gives us the system 

characteristic time   (response time): 
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This time is directly proportional to the moment of inertia J , what is a physically obvious fact.  

 A standard DC drive system with speed and current control is shown in the Figure below. The 

purpose of the current loop is to make the actual motor current follow the current reference signal. It does 

this be comparing a feedback signal of actual motor current with the current reference signal. As long as the 

current control loop functions properly, the motor current can never exceed the reference value. Hence by 

limiting the magnitude of the current reference signal, the motor current can never exceed the specific value. 

It means that if for example the motor suddenly stalls because the load seizes, the armature voltage will 

automatically reduce to a very low value, thereby limiting the current to its maximum allowable level.  
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Servomotors are used in closed-loop position control applications. The potentiometer mounted on the 

output shaft provides a feedback voltage proportional to the actual position of the output shaft. The voltage 

from this potentiometer must be a linear function of angle. The feedback voltage (representing the actual 

angle of the shaft) is subtracted from the reference voltage (representing the desired position) and used to 

drive the motor so as to rotate the output shaft in the desired direction. When the output shaft reaches the 

target position, the position error becomes zero, no voltage is applied to the motor, and the output shaft 

remains at rest. Any attempt to physically move the output shaft from its target position immediately creates 

a position error and a restoring torque is applied by the motor. Unfortunately, the dynamic performance of 

the simple scheme described above is very unsatisfactory as it stands. In order to achieve a fast response and 

to minimize position errors caused by static friction, the gain of the amplifier needs to be high, but this in 

turn leads to a highly oscillatory response which is usually unacceptable. The best solution of this drawback 

is to use tachometer feedback in addition to the main position feedback loop, as shown in the Figure below. 

 

Tachometer feedback has no effect on the static behaviour, but has the effect of increasing the damping of 

the transient response. Many servo motors have an integral tachometer for this purpose.  



 

 


