L_ecture 7

I. Laplace transformation

The Laplace transformation is used when we have some initial conditions in a linear network. The
main equations for the Laplace transformations can be derived from the generalised Fourier transformation
introduced in Lecture 4. Since the Laplace transformation is applied only along the positive semi-axis x>0,
we need just the “+” generalised Fourier transformations — direct and inverse:

f.(p)= [ f(x)exp(-i px)x &y
0
(x>0 == [, (pexpli px)p @
ia—oo

where a<0 and |a| is sufficiently large to guarantee the convergence of (1) and (2). Introducing the new
variable ip=s, we obtain:

f.(p)=f(s)= [ f(x)exp(-sx)dx 3)
0
|a|+i08
f(x>0)=—— [ f(s)exp(sx)ds ()
ol ioo

where f(s) is the Laplace image and Eq. (4) is the inverse Laplace transformation. For the Laplace
transformation, we have the following useful properties:

t

a(t) = [ gt—h(x)dx = q(s) = g(s)(s) (5)
0

+0 k k k—

I d fk(t) exp(~st)dt =s* f(s)- sm_lwz

.t mo1 dt* " ©6)

~ k-1 k-2 k-3

_snf(s)_d dtkiEO) . d OItI(fz(o) 24 dtkjéO) sl ()

Since we will consider only stable networks, the inverse Laplace transformation (4) can be formally
expressed through the inverse Fourier transformation:

|af+ico +ioo

1 . . 1 5
f(x>0)= ﬁl&ll@omgi;@) exp(sx)ds = %_Lf (s)exp(sx)ds =

1

—— | f(ip)exp(ipx)dp (7)
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where p is the new integration variable. For the analytical calculation of Zi j f (ip)exp(ipx)dp we can
T

use Egs. (4.52)—(4.55).

I1. Stationary linear networks with initial conditions

In this section, instead of the general variable x we will consider the time variable t. Then, the
initial conditions mean that the output parameter Vq (t) is subjected to some additional conditions at the
time moment t=0. (All the explanations will be conducted for a scalar network, but the corresponding
generalisations for a vector network can be easily obtained) In turn, the initial conditions by themselves can
be represented in the form of some linear (differential, integral, or integro-differential) operators D; acting
on Vout (1) : DiVout(t)|t:o =C;, where i is the integer index and C; are some real or complex constants.
The initial conditions have to define the system behaviour for t>0: in compliance with the classical
deterministic principle. For example, for a massive material point moving along the real axis, the initial

. . . . X(t
conditions are its position and velocity at t=0: Dlx(t)|t:o =X(0) =Xg and D2X(t)|t:0 :% =V
t=0

Actually, the initial conditions can be applied at any time moment, and the time moment t=0 has been
chosen only for convenience.

If a linear system “is forced” to satisfy the initial conditions, its behaviour or “history” before t=0
can be completely ignored when we consider t > 0. In this case, the convolution integral can be rewritten in
the following form:

t
Vout (t) = [ F(t=s)Vin(s)ds, (8)
0

where t is the current time, F(t) is the kernel of integral operator, Vj,(t) is the input parameter, and Vg (t)
is the output parameter. Changing the variable s=t—q, the integral in (8) can be rewritten in the following
form:

t
Vout () = [ F(@Vin(t-a)dg )
0

However, for non-zero initial conditions, these convolutions cannot describe all the system features since the
integrals will be zero at t=0. Therefore, we have to add some additional terms to Egs. (8) and (9) to satisfy
the initial conditions. The corresponding technique will be explained by the example of an ordinary
differential equation of the order n with the constant coefficients:

N dkfy (d ~
kz:‘aak o —P[ajf(t)—A(t) (10)



N
where P(t) = Zaktk is the symbol of differential operator (polynomial), A(t) is a function defined only
k=0
for t >0, and ay are some constant coefficients. This equation can be supplied with the initial conditions:

f(0)=by
afr )
dt

t=0
d2f(t)
dt?

=b,
t=0

(11)

where bj are some constants. Without initial conditions, Eq. (10) can be immediately solved using the
operational calculus developed in Lecture 5:

f(t)= j'E(t—s)A(s)ds (12)
where

E(t>0)—27[ L e’;f’((l'a‘j)t)d _|ZreS{P(thexp(izmt) (13)
P(iw) = %akikwk (14)

k=0

Applying the direct Laplace transformation to Eq. (10) and using the property (6), we obtain:

- N - -~
P(s) f(s)— D Pk (s) = A(s) (15)
k=1
where
N
P(s) = Zaksk (16)
k=0

k k—m
Fi(s)=ak2{m1d f(O)J 2> 6™, ) (17)

m=1 dt -1



Solving (15) with respect to f (s), we obtain:

_AG), SR ) 18
~P(s) kzl P(s) (%)
Applying the inverse Laplace transformation to Eq. (18) and using Eq. (7), we obtain:
177 Alo) ¢ B io) _
f(t>0)= ”_L 5 )exp(lcot)dco+ Z{ 2 I 5io) eXp(Ia)t)da)] (19)
Using Eq. (12) with A(t <0)=0, we can rewrite Eq. (19) in the following form:
f(t>0)= jE(t S)A(s)ds + Z[ j Pk('a’) exp(i }
pliot)dw (20)

Since the order of each polynomial B (iw) is less than the order of P(iw), the inverse Fourier

transformations in Eq. (20) will be classical, and hence it can be calculated using the residues (see (4.53) and
(4.54)):

1 P R(io) 5 od Pelizm) |
o I Wgexp(la)t)da):l% res[ﬁ(_—m)}exp(lzmt) =
- . (21)
d™ P (i2) :
- Z{(nm —l)lz—>z {dznm—l {( m)" P(iz) }}exp(lzmt)}
Using Egs. (20),(21), we finally obtain:
t N A
f(t>0)= j E(t—s)A(s)ds + Z‘{iz res{M}exp(izmt)} =
0 1l m P(izy,) )

‘ St N P (i2)
_gE(t_S)A(S)deZj%{(nm _1)!Zl_l)n;1 {dznm_l{( — )" iz )} exp(izmt)

where

N k
kz::oak d dtfk(t) _ P(%) f(t)= A®t) (original equation)

d™f (1)

b =
g

m=0,N -1 (initial conditions)

t=0
1 | dW (2= zpy)™ .
; )}exp(lzmt) |Z[( m_l)ul_l)n; {dz“ml{ B in) exp(izpt)
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N
P(iz) = > ayifz"

k=0

5 K frme1m-1
P (iz) = ay (im_ 2™ bk_m)
m=1

z,,, are zeros of the polynomial P(iz)

From Eqg. (22) we can see that the influence of the initial conditions degrades exponentially with the time.
After the certain “characteristic” time, the system will completely forget about its initial conditions and its
behaviour will be synchronised with the external stimulus A(t >0) . So, the initial conditions are important

only during the characteristic time.

We have derived the formula for the Fourier transformation from the ratio of any two polynomials
Q(w) and H(w), if the order of Q(w) is less than the order of H(w):

J' exp(la)t)da)—|Zres{g(zm))}exp(izmt):

m

ot Q) .
] Z{(nm S {dz”m_l{( S (z)} M

If the order of Q(w) is the same or larger than the order of H(w), we have to extract the constant or
growing part from the ratio, the Fourier transformation from which must be calculated as the generalised one
(see (4.53)).

(23)

Let us demonstrate the use of Eq. (22):

a) RC circuit

dVe .
RC “a +Ve (1) =Vin (1) (24)
Ve (0)=Vp

Here, R (resistor), C (capacitor), and V;,(t) (generator) are connected in series, V¢ is the voltage across

the capacitor, and V is the initial voltage. Then:
P(iz) = RCiz +1 (has only one zero z; =i/(RC))

Py(iz) = RCVq = const (a; =RC and by =Vp)

. 1 . . —i 1 t
E(t>0)=Ixres| — exp(izqt) =i xres| ———  |exp(izqt) = —exp| ———
>0 {P(izl)} plizst) ) pi21) = s o0 s |
RC




ixres M exp(izgt) =ixres ﬂ exp(izgt) =Vo exp(_Lj
P(izy) rel - 1 ) RC
RC

t

tenawv o B | 1 [_(t—s)}_ (_Lj
VC(t>O)—£E(t SVVin(s)ds +i res_ FA)(iZl)}exp(lzlt)—chexp RC in(s)ds +Vgexp nC

(25)

For t >> RC, the system will completely forget about the initial condition V¢ (0) =Vj.

b) Damped oscillator

2
LTO:0
dt? dt

X(O) =Xp = bo (26)

dx(t)
—\J =Vn =
dt g by

+kx(t) = AY)

Here, m is the mass, g is the damping coefficient, k is the Hook coefficient, A(t) is the external force, Xq
is the initial position, and v is the initial velocity. Then:

P(iz) = -mz? +igz + k

P.(iz) = aghg = 9%g

2
P, (iz) = a, Z(i m=1m=1y o ): aoby +ayizhy = a, (by +izby ) = M(Vg +iXy2)
m=1

P(iz)=0 =-m(z—7)(z-125)

1 _ -1
P(iz) m(z-2)(z—2,)
2 ¢ |
zlziiJr k_9 (two poles)
2m m 4m2
7, = 9 h_ 92
2 =1 s
2m m 4m2
2
i P . 2m m 4m2
g <+/4mk is the ringing regime = (complex poles)
2




g >+/4mk is the overdamped regime =

T ! ! and 7 1 !
1= — 2= = .
mal g g® K Mzl g |¢® &
2m \'4m?2 m 2m \z4m2 m

Below, we will consider only the ringing regime.

E(t>0)= i%: res{ |5(1 Jexp(izmt) =ix res{ |:3(1

129

)}exp(izlt)ﬂxres{ ~ : )}exp(izzt):

m P(iz,
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Finally, we obtain for the ringing regime:

2 /k 92
X(t) = —— exp(——(t s))sm (t—s),|—————= |A(s)ds +
\amk — g £ 2 ( 4m? ]
9 k_o® |, (exo+2mvo) (9 ol [k _ 0
+Xoexp( ™ thos{t m " am? }r m exp( thjsm[t o 4m2]

(27)

b(t) b(t)
Using the formula %[ jf(s,t)ds}: I f ((ji’t) ds+ dt(;f[) (b(t),t)- dZEt) (a(t),t), it is easy to check that

a(t) a(t)

x(t) satisfies the initial conditions. For t >> % , the solution will be synchronised with the external force:

t 2
J.exp(—i (t— s)}sin[(t —-9) K g—JA(s)ds
2m m 4m?

2
X({t) x ——
\/4mk—g2 0




c) Linear mechanical system with two degrees of freedom (vector linear network)

Here, f,153 are the damping parameters (due to a friction or viscosity), K;, are the Hook coefficients
(springs), and My , are the masses. In accordance with Newton’s law:

2
M, d’t‘lz(t) = £ - Ko () +Ka(xp () -3 (0)+ fv3( dxjt(t) ) dxét(t)j_ fVl dxét( :
(28)
2
" d>;22 ® _ gy (1) + Ky (g (1) = 3o (0)+ fVB(dxé t(t) B dxjt(t) J _ ¥, dxst(t)

In Eq. (28), all the forces are grouped at the right to demonstrate their physical meaning:

{— K1 (t)
—Kzxa(t)
x1 2 (t) coincides with the direction of f (t). This is an obvious physical fact.

These “self” Hook’s forces will be opposite to f (t), if the direction of displacements

These “mutual” Hook’s forces depend on the relative displacement
Ko (% (t) = X2 (t))

(x2 (1) =x1(1)) or (x¢(t) ~ X2 (1))

{Kz(xz ) —x (1))

To define the proper signs for these forces, let us consider the situation when both the displacements x 5 (t)

have the same direction as f(t), but x,(t) > x(t). In this case, the spring K, will pull forward the mass
M1 (Xp(t)—x(t) >0) and back the mass M, (x(t)—x5(t) <0). Here, “forward” means in the direction of

f (t), and “back” means in the opposite direction.



¢ (de (t) dxl(t)j
Bla

These “mutual” friction forces depend on the relative velocity

¢ (dxl(t) de(t)j
v3 -
dt dt
(dxz (t) dxl(t)] or (dxl(t) _dxp (t)}
dt dt dt dt )

dxq 2 (t)

To define the proper signs for these forces, let us consider the situation when both the velocities

do () _ dx ()
dt dt

have the same direction as f(t), but

dxp(t) dxq(t) dxg () dxo(t)
dt dt dt dt
direction of f(t), and “back” means in the opposite direction.

. In this case, the damper f,3 will pull forward the

mass M; [ >Oj and back the mass M (

< Oj Here, “forward” means in the

dxq (t)
- fv1 dt
i, (1) These “self” friction forces will be opposite to f(t), if the direction of
_f 2
v2 dt
Lo U)o . N . . .
velocities coincides with the direction of f (t). This is an obvious physical fact.

The system (28) can be rewritten in the following equivalent form:

d®x (1)
dt?

dxq (t)

dxo (t
+(f+ fvs)TJr(Kﬁ Ko xq (t) - fy3 2(0) _

M Koxa (t) = f(t)

M, d2x, (t) (fps fv3)dx2 (t) dxq (t)

2 +(Kz + Kz )xa () - fua

— K2X1(t) =0

It can be supplied with the initial conditions:

x1(0) = 19
dxy (t)
dt o
X2(0) = X2
dxy (t)
—= =y
. 20

Applying the direct Laplace transformation (3) and using Eq. (6), we obtain:
[Mlsz +(fur + fuz)s+(Ky + Kz)}il(s) —(fur + fua)xao —M1(vig +X408) —[ fuas + Kz [x2 (8) + fuaxao = F(9)

['V' 287 +(fup + fug)s+(Kg + Kz)]iz ()~ (fuz + fya)xa0 — M (Vag +Xz08) ~[ fugs + Ko Jfa (5) + fygxgo =0



[Mlsz +(fp + fyz)s+(Ky + Kz)}*l(s) —[fyas+ KpJRa(s) = F(8) + Myxgos+(fug + fua)xao — fyaXao + Myvyg

~[fygs+ Ky % (s)+ ['V' 257 +(fya + fuz)s+(Kz + Kz)]7<2 (8) = Moxgps +(fyz + fug)Xoo — fuzXig +MoVag

For this system of algebraic equations, we can introduce the following polynomials of the variable s:

A(S) = M152 +(fv1+ fv3)S+(Kl+ K2)
E(S) = M282 +(fv2 + fv3)S+(K3 + K2)
C(s) = fy3s+ Ky

D1 (s) = Myxgos+(fug + fyz)Xe0 — fuaXoo + Mvig
Dy () = MXa0S +( 2 + fyz)Xa0 — fuzXig + Mavyg

Then:
A(5)%1(5) ~C(8)Xa(s) = f(s) + Dy (s)
—C(5)%1(s) + B(5)X(s) = Dy (s)

This system can be easily solved:

Bs) . BODIE) . C)Dy(9)
A(5)B(s)-C2(s) A(S)B(s)-C?%(s) A(s)B(s)-C?(s)

X (s) = f(s)

C®) ., COD) . ASD)

Xp() = F(8) ——— S —+—— Lo 2
A(S)B(s)—C“(s) A(s)B(s)—C<(s) A(s)B(s)—C“(s)

Similar to Eq. (13), we can introduce the following time domain transfer functions used in the convolutions
with the external force f(t):

Ey(t>0)=i)] res{ B(izpn) }exp(izmt) =
m A(iz ) B(iz) - C? (izm)

. d"m-1 é(iZ)(Z—Zm)nm -
= Z[(nm -1)! z—)Z {dznm_l{A(iZ)é(iZ) _éz(iz):|}eXp(|th)]

Ex(t>0)=i) res{ Cizm) }exp(izmt) =
m A(iz ) B(izy) - C? (izm)

_ . dnm—l é(iZ)(Z—Zm)nm -
z[(”m D, {dZ”m‘l{A(mé(iz)—éz(iz)}}exp(lzmt)]




where z,, are zeros of the denominator A = A(iz)B(iz) —éz(iz). Finally, we obtain:

t
X, (t >0) :jEl(t—s) f (s)ds +
0

S red  Blizm)Dy(izy) }

- : C(izy) D5 (izp) _
= | Alizm)B(izg) - C2(izp) exp('zmt)“zre{ﬂ o2 lexp(izmt)

o | Alizm)B(izm) - C(izy)

(29)

t
x2(t>0):jE2(t—s)f(s)ds+
0

+iY res C(izn) Dy (izy,) }exp(izmt) +iY) res{ Alizy) D (izpn) exp(izmt)

o | Alizm)B(izm) —C(izy) m | Alizm)B(izm) —C(izy)

These solutions are very complicated, since we have to find zeros of A = A(iz)B(iz) —Cz(iz). However, it is

still possible to do analytically (!) since the order of this polynomial is 4. If the initial conditions are zero, we
obtain:

t
X (t>0)=[Eq(t—s)f(s)ds
0

t
x2(t>0)=jE2(t—s)f(s)ds
0



I11. Rotational mechanical systems

The following simple model (see the Figure below) will help us to derive the
main equations for a rotational solid. The mass m is fastened on the arm L,

which can rotate around the centre. The external force f(t) is applied at right
angle to this arm at some distance L¢ (L may be larger or smaller than Ly, ):

Inertia force

For the external and inertia forces, we can write the moment equality for each moment of time t:

Ls f(t) = Lpyma(t) (30)

Here, v(t):Lm$:Lma)(t) is the linear velocity, «(t) is the angular velocity, and

2
=m =L d“o(t) =Ln d(gt(t) is the angular acceleration. Therefore, Eq. (30) can be rewritten in the

a(t
©==5 o2

following form:

2 2
L f(t)=me[Lm ddté'z(t)]sz m% (31)

By the definition, L¢ f(t) is the scalar torque T(t) (NewtonxMeter; Sl units) and L,an (MassxMeter?; SI

utins) is the moment of inertia J (constant!). Finally, we obtain:

d®o(t) _ ; do(t)

T(t)=1J
(t) e ot

(32)
The mechanical power W (t) (Joule/Second or Watt; Sl units) is calculated as the work produced by

the external force per the unit time. Using our simple mechanical model, we can use the infinitesimal
analysis to calculate W (t) :

Le|f(t+At)O(t+At)—f()O(t
W= lim f [ @+ A00(+ A0 - F O] |
At—0 At is the mechanical power.



Then, using Taylor’s expansions we obtain:

dr @) do()
Ll Ae A T 000)] K”t) N Atj_f(t)g(t)}
W ()= lim = lim =
At—0 At At—0 At
L {df(t)ﬂ(t) de(t)f(t)} 91O gty + 99 14y dT(t)H(t) wO)T (1)
d d dt dt
W = o0+ 00T = T 000) 33)

If T(t)=const, then W(t) = o(t)T .

A:TW(t)dt:T%(T(t)e(t))dt=T(t2)6?(t2)—T(tl)9(tl):A[T(t)e(t)] is the mechanical work produced

4

during the time interval [t;,t5].

In the general case, the mass and the external force may be distributed (non-point force and mass),
but Egs. (32),(33) remain the same. For the distributed mass and external force, T(t) and J must be

calculated with respect to the rotation axis:

J = [ p(xy,2)R*(x,y,2)dV (34)
\Y

T = [([nxRx,y, 2)].F(t:x,y,2))dV (35)

Here, dV =dxdydz is the elementary volume, po(x,y,z) is the mass volume density, V is the volume of
solid, n is the unit vector directed along the rotation axis, R(x,y,z) is the radius-vector which is
perpendicular to the rotation axis and directed from this axis to the integration point inside V , where the
vector force f(t;x,y,z) is applied, R(X,y,z)= R(x,y,2z)| is the module of R(x,y,z), [ _x_] is the vector
product of two vectors, ( _, ) is the scalar product of two vector. In (35), we have the mixed product of
three vectors. Eq. (35) shows that a vector force f(t;x,y,z) applied to the solid produces a torque only if it

has a component along the vector [nxR(x,y,z)], i.e. perpendicular to the rotation plane. All other
components will not contribute to the torque.

For Eq. (32), we can also introduce the additional frictional D% and elastic K&(t) torques (they have
the same dimension as T ):

29(t) 5400
J +Ko(t) =T(t) (36)

dt? dt

Eq. (36) can be supplied with the initial conditions:




0(0) =6,

dow) 37)
T o = 60(0) =

Since Egs. (35) and (36) are similar to Eq. (26), we can use the same analytical tool.

Gears transform both the speed of rotation and the applied torque. For two gears (1,2) with the radius
r, o and the number of teeth N; , respectively, we have the following ratios:

(6,() _n_Ng R N
—91(t) =, ——N2 = Oh(1)= ) Z10) ——N2 Z10)
(38)

To) _r2 N2 To(t) =27 (t) = &H(t)
Tt n N 1 N1

Therefore, a gear mechanism can be considered as a linear network, as shown in the Figures below.

For a rotational solid attached to the second gear, we have (see (a) in the Figure below):

d26,(t) , 4% ()

5 +KO0) =T, () (39)

J

Putting 6, (t) = Hl(t)% and T, (t) :Tl(t)% into Eq. (36), we obtain (see (b),(c) in the Figure below):
2 1

2 2
N} doa(t) LEIOM
() ea +D(N2j A ]alm T 0




For a gear train, the equivalent gear ratio is the product of the individual gear ratios, as shown in the Figure
below.

IV. Electromechanical systems

Any electrical motor together with a mechanical system attached constitute an electromechanical
system. For such system, electrical and mechanical properties must be considered together since they affect
each other. In this section, we will study the voltage-controlled DC motor. The driving magnetic field in this
motor is induced by stationary permanent magnets or electromagnets. This motionless part of the motor is
called the stator. The armature coils, which are assembled on the rotor (rotating part), are connected through
the commutator and brushes to a voltage source.



The motor torque T(t) is developed due to the interaction of the armature current 1,(t) with the
magnetic field induced by the stator:

T (1) =Kila(t) (41)

where K, is the proportionality coefficient that depends linearly on the stator magnetic field (which is

assumed to be uniform in the stator-to-rotor gap) and also on the design of armature coils. If the stator is
made of electromagnets, K; will depend on the stator current I4(t):

Ki (1) = Kes I (1) (42)
where Kjs is the proportionality constant which is defined by the design of stator and rotor.

The armature and stator coils by themselves are characterised by the inductances L, and Lg, and the
resistances R, and R, respectively. In the armature circuit, we also have to take into account the so-called
back e.m.f. Vy(t), which is induced in the rotating armature coils by the stator magnetic field (due to
Faraday’s law). This back e.m.f. is directly proportional to the speed of rotation:

E0)

Vp (1) =—Kp ot

(43)

where Ky, is the proportionality coefficient that depends linearly on the stator magnetic field (which is

assumed to be uniform in the stator-to-rotor gap) and also on the design of armature coils. If the stator is
made of electromagnets, Ky will depend on the stator current I4(t):

Kpp (t) = Kps 15 (1) (44)



where Ky is the proportionality constant which is defined by the design of stator and rotor.

The simplest feeding scheme is realised when the armature and stator coils are connected to the
different voltage sources, as shown in the figure below. In this case, K; and K are constants, and we have

the following system of differential equations for the armature current 1,(t) and the rotation angle 4(t):

o)
b

Ryl (0)+L, d'gt(t) +Kp S0V (1) (45)
2

;9 dfz(t) 030, ko =T () (46)

T(t)=K¢la(t) (47)

Stator (permanent magnets or electromagnets)

R L,
a Ls Rotor

< T g1t

2
We will consider the system (45)—(47) with zero initial conditions. There: J =J4 +J L(%J is the
2

2
Lo , N ,
total moment of inertia, including the armature and the external load, D =D, + DL(—lj is the total
2

2

. N . .

damping parameter, and K:Ka+KL(N—1J is the total elastic parameter. Here, we assume that a
2

rotational external load can be connected to the motor through a reduction gear, as shown in the figure
below.



Applying the direct Laplace transformation to Eqs. (45)—(47), we obtain (zero initial conditions!):

Rala(s)+Lasla(s)+Kps@(s) =Va(s) (48)

Js20(s) + DsO(s) + KO(s) =T (s) (49)

T(8)=Ktla(s) (50)

Solving Egs. (48)—(47) with respect to I,(s) and &(s), we obtain:

_ . Js? + Ds+K

[2(9) =Va () —— s ) (51)

JLgs” +(JRy + DL,)s” + (DR, + LK + KK )s+RaK
_ - K
0(s)=Va(s) —— 7 (52)
JLgs” +(JRg + DLy )s” + (DR, + LK + K Kp)s+ RgK

For further analysis, we will neglect K:

_ - Js+D

Ia(8) =V (8) ——5——— o+ D) (59

JLzs” +(JR; + DLy)s+ (DR, + KiKp)
_ - K
0(s) =V, (s) 5 t (54)
S(JLgs” +(JRy + DLy )s+ (DR, + KKp))

Let us introduce the following two polynomials:

P(z)=JLa22+(JRa+DLa)z+(DRa+Kth) (55)

H(z)=Jz+D (56)

Then, (49) and (50) can be rewritten as:

i 7 HE)

I S =V S)—— 57
a(s)=Va(s) 55) (57)

_ Ki

0 S)= - 58
(s)=Va(s) () (58)




Calculating the inverse Laplace transformation from (57),(58) with the use of Egs. (12)—(14) and (22), we
obtain (zero initial conditions!):

t
I, (t>0)= j E(t—s\V,(s)ds (59)
0
t
Ot > 0) = j Ey(t—s)V, (s)ds (60)
where

E,(t>0)= exp(lzlt)xlxres{ ()} +exp(izot) xixres
=17 (61)

;/l—|

_ LiD-o exp[_ o0 t} L,D—a, exp(—ﬂ
La(al_az) Ly La(az_al) JL

P(iz) = —JLyz% +i(JRy + DLy)Z+ (DR, + K¢Kp) = —JLa(zz -

:(Rg +DLa) ,_ (DRy +KiKyp) ) _
I, I,

. (ll . 0[2
=-JL.(z—-21)(z2—25)=-JL,| z—1i Z—1
a(z—7)(z-123) a( JLaJ( i,

1o =

-(JRa +DLg)(,, [, 4ILa(DRa+KKp) |_. 12
2L, - (JR, + DL,)? JLa

2y, = ORa+DLa)l;, [ HILa(DRy + Ktrb)
(JRy +DLy)

Kt
| (iz)P(iz)

Eg(t>0)=i><res{

- X.X Kt —
L Z +exp(izgt) xi re{(iz)'ﬁ(iz)}zzzg

} +exp(izqt) xixres
z=0

t
(iz)P(iz)

_ Kt Lo Kedla p( 2l j+ tdba p[_ﬂ J
DR, +KiKp (a1 —a2)m Ly ) (e2-e)ay JLa
(62)

Putting Egs. (61),(62) into Egs. (59),(60), we finally obtain:

(t> m—MIe 1(t—s) (s)ds+M.t[ex ~ %2 (1 _5) N, (s)ds  (63)
'a I—( M La e La(O‘Z_al)o P JLa e

x 052



t t
9(t>0):Ljva(s)ds+&jexp — 2 (t—s) N,y (s)ds+
DRy + KKy (1 -az)n L,

t
Kidlg a
+ —(az ) gexp(— E (t— s))\/a (s)ds

If in Eq. (45) neglect L, (a quite reasonable assumption for a practical DC motor), then we obtain:

(64)

dogt) _
Rala(t)+ KbT—Va(t) (65)
T =Kila(®)
Excluding the current 1, (t) = % we obtain:
t
Tt ="af_Kio ;) (66)

Ra Ra

Eqg. (66) is a straight line, T(t) vs. w(t), as shown in the figure below. If V, is a constant voltage, after the

certain characteristic time, we obtain a steady-state rotation. For this steady-state rotation, we can use the
same Eq. (66).

AT
Tstall
Va1> Va2
Va2
(0]
>
Who-load
Tstall =VaRKt (67)
a
Va

(68)

®Ono-load = K_b



From Eqg. (67),(68) we can make some important
conclusions. First of all, the angular velocity is directly
proportional to V,, and this principle is used to
regulate @. Since Ky, is directly proportional to the
stator field, a larger stator field will reduce the rotor
steady-state velocity. This conclusion is quite
unexpected! However, since K; is also directly
proportional to the stator field, a larger stator field will
increase the rotor torque, and hence its acceleration

under a load. All these features are shown in the
Figure at the left.

Above, we have considered the feeding scheme where the stator and rotor are connected to the
different voltage sources. There are possible other feeding connections, where (i) the stator is connected in
series with the rotor or (ii) the stator is connected in parallel with the rotor, as shown in the Figures below.
These feeding connections will result in (i) a non-linear network and (ii) a non-stationary linear network,
respectively. Unfortunately, these networks cannot be analysed by the analytical methods developed in our

previous Lectures.

LS

Vas LYY YY)
las iRs
- — |

T(t) an)

(non-linear network)



(non-stationary linear network)

V. Closed-loop speed control of a DC motor

A simple closed-loop speed control of a DC motor is shown in the Figure below. The tachometer delivers a
signal V7 (t) to one input of the differential amplifier and the DC reference voltage V¢ is applied to the other input.

The differential signal (Ve —V7 (t)) is used to maintain the rotation at constant speed. The output voltage of the

differential amplifier is passed through the power amplifier to allow a bigger driving current for the motor armature.
For further analysis, we will assume that the power amplifier is a current source, i.e. it provides the armature current

la (t).

The operation of the motor can be determined from the combination of the individual transfer functions
written in the s-representation (an analog of the frequency domain for the Laplace transformation). The transfer

functions of the differential amplifier G4, the power amplifier G5, and the tachometer Gt are assumed to be
constant:

- \ -

Vg (s) =Gg [Tf V7 (s)} (69)
T 7 Viet -

la (8) = GaVy (8) = GaGy ( A (S)J (70)
\7T (s)= GT a(s) (71)

\Vj ~+00
where Vo is the DC reference voltage that defines the speed of rotation, (Lef]zvref J'exp(—st)dt is the
S
0

Laplace image of the DC reference voltage, and \7T (s) is the Laplace image of the tachometer voltage output, \7d (s)

is the Laplace image of the differential voltage output, ra (s) is the Laplace image of the armature current, and @(S)
is the Laplace image of the angular velocity.
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From Egs. (53) and (54), we obtain:

JLyS2 + (IR, +DLy)s + (DR, + K¢Kp)

Vo (s)=1T,4(s 72
2(8)=Ta(s) G5oD) (72)
. - K - K
0(s)=Va(s) 5 t =la(8) (73)
s(JLgS“ +(JRy + DLg)s + (DR, + K Kp)) s(Js+D)
e . _ .
Since @(S) = I exp(—st)dt =sé(s) (where we have taken into account #(0)=0), using Eqg. (73) we can
0

write the motor transfer function G, (s):

12 () (74)

S~ i (c)— t
@(8) =G (8)1a(8) = (35+D)

Let us remind that the armature current is provided by the power amplifier which is a current source. The
closed-loop signal flow for our network is shown in the Figure below:




Differential mixer Power amplifier Motor

Viet I V4 (s) 1,(s) w(s)
—> G, —>| G, G,(5) 1
Input Output
@(S)
V7 (s)
\Y,
7(8) GT < w(S) v

Tachometer: feedback network

Using this signal flow graph, we obtain:

a(s) =

(%w (5)G4Gy Vief (75)
1+G,(S)GrGaGy | s

Therefore, we have derived the transfer function (Reference signal = angular velocity) of the closed-loop
network:

F(s) = 2095 (76)
1+G,, (s)Gr GGy
Putting Eq. (74) into Eq. (76), we finally obtain:
F(s)=——t5aCd (77)
Js+(D+KiGrG,Gy)
. (D+K{G7G,G ~
For the system stability, the only zero zg = |( - tGJT aGu) of P(z)=iJz+(D+K{GrG,Gy4) must be
(D +KiGrGaGy)

located in the upper complex half plain, i.e. >0. This zero gives us the system

characteristic time = (response time):

1 ]
"TIm(zg) ~ D+ KGrG,Gq

(78)

This time is directly proportional to the moment of inertia J, what is a physically obvious fact.

A standard DC drive system with speed and current control is shown in the Figure below. The
purpose of the current loop is to make the actual motor current follow the current reference signal. It does
this be comparing a feedback signal of actual motor current with the current reference signal. As long as the
current control loop functions properly, the motor current can never exceed the reference value. Hence by
limiting the magnitude of the current reference signal, the motor current can never exceed the specific value.
It means that if for example the motor suddenly stalls because the load seizes, the armature voltage will
automatically reduce to a very low value, thereby limiting the current to its maximum allowable level.



Servomotors are used in closed-loop position control applications. The potentiometer mounted on the
output shaft provides a feedback voltage proportional to the actual position of the output shaft. The voltage
from this potentiometer must be a linear function of angle. The feedback voltage (representing the actual
angle of the shaft) is subtracted from the reference voltage (representing the desired position) and used to
drive the motor so as to rotate the output shaft in the desired direction. When the output shaft reaches the
target position, the position error becomes zero, no voltage is applied to the motor, and the output shaft
remains at rest. Any attempt to physically move the output shaft from its target position immediately creates
a position error and a restoring torque is applied by the motor. Unfortunately, the dynamic performance of
the simple scheme described above is very unsatisfactory as it stands. In order to achieve a fast response and
to minimize position errors caused by static friction, the gain of the amplifier needs to be high, but this in
turn leads to a highly oscillatory response which is usually unacceptable. The best solution of this drawback
is to use tachometer feedback in addition to the main position feedback loop, as shown in the Figure below.

Tachometer feedback has no effect on the static behaviour, but has the effect of increasing the damping of
the transient response. Many servo motors have an integral tachometer for this purpose.






