
© 2002-2009 Summit Electronics Ltd www.summitelectronics.co.uk
Page 1 of 7

Manchester encoding using RS-232
Author: Adrian Mills
Date: 30-03-2009

www.summitelectronics.co.uk
Rev 2.1

INTRODUCTION
The following takes a look at transporting Manchester encoded data [1] using RS-232, over a radio
frequency (RF) link.

Those familiar with RS-232 / RS-485 etc will be aware that when data is sent through a cable to remote
equipment it gets there with good reliability. If error detection is required, this can take the form of a
checksum as part of a packet-based protocol. However, should you want to send the same data over an
RF link a number of things have to be taken into consideration. Most notably is the need to maintain a
zero DC component in the serial bit stream.

RS-232 / RS-485 is generally encoded and decoded using a universal asynchronous receiver and
transmitter (UART). It is the UART we shall be using to transport Manchester encoded data.

MANCHESTER ENCODING
Manchester encoding (also known as Biphase Code) is a synchronous clock encoding technique used to
encode the clock and data of a synchronous bit stream. In this technique, the actual binary data to be
transmitted over the cable or RF link are not sent as a sequence of logic 1's and 0's as in RS-232 (known
technically as Non Return to Zero (NRZ)). Instead, the bits are translated into a slightly different format
that has a number of advantages over using straight binary encoding (ie NRZ).

The main advantages of using Manchester encoding are:

1. Serial bit stream has a DC component of zero
2. Error detection is simple to implement

In general, when transmitting serial data to a radio receiver, a DC component of zero must be maintained
(over a finite time). This is so the demodulator in the receiver can properly interpret (discriminate) the
received data as 1's and 0's. Manchester encoding allows us to do this.

Manchester encoding follows the rules:

1. If the original data is a Logic 0, the Manchester code is: 0 to 1 (upward transition at bit centre)
2. If the original data is a Logic 1, the Manchester code is: 1 to 0 (downward transition at bit centre)

It can be seen that there are two bits of Manchester encoded data for each bit of original data. The
penalty for doing this is Manchester encoded data requires more bandwidth than NRZ encoding.

Example of Manchester Encoding:
The pattern of 8-bits: " 0 1 1 1 1 0 0 1 " encodes to " 01 10 10 10 10 01 01 10". The least significant bit
(LSB) is shown left most. Figure 1 shows a drawing of the encoded pattern as a waveform in the time
domain.

Figure 1 Waveform for the Manchester encoded bit stream carrying the sequence 01111001

Bit boundaries

0 1 1 1 1 0 0 1

© 2002-2009 Summit Electronics Ltd www.summitelectronics.co.uk
Page 2 of 7

Alternatively the above can be represented as two 4-bit nibbles
1. The pattern of bits " 0 1 1 1 " encodes to " 01 10 10 10 " (see Figure 2a)
2. The pattern of bits " 1 0 0 1 " encodes to " 10 01 01 10 " (see Figure 2b)

Figure 2 Waveforms for the Manchester encoded bit stream carrying the sequence 0111 & 1001

This step leads us to sending 8-bits of original data as two bytes of Manchester code.

Illegal codes
Given that a 0 encodes to 01 and 1 encodes to 10, it follows that Manchester codes 00 and 11 are illegal
sequences. These illegal codes are used to error check the data.

It is also possible to have the 4-bit illegal code " 00 00 11 11 ", which would be an unlikely occurrence.
This 'illegal code' has the property of having a DC component of zero and has no 1 to 0 transitions.
We can use this 'illegal code' (" 00 00 11 11") as a unique start/stop pattern to identify the boundaries of
our Manchester encoded bit stream or data frame (see Figure 3). It will also serve to initialise the radio
receivers’ demodulator and synchronise the receiving UART.

Figure 3 Unique start/stop pattern

RS-232 Wave Form
In RS-232, user data is sent as a number of frames each a synchronous time-series of bits, typically eight
bits in length. The diagram in Figure 4, where B0 is data LSB, shows the expected waveform from the
UART when using eight data bit, no parity and two stop bit format, .

We can use RS-232 as a carrier for Manchester encoding provided that RS-232 characters (bytes) are
transmitted end-to-end with no inter character delay. RS-232 has a start bit, logical 0, and a stop bit,
logical 1 which have a DC component of zero. In our real life application 2-stop bits may be all that's
available to us. What 2-stop bits means is that the DC component is no longer zero, so here we make a
compromise and say the DC component is near zero (i.e. the extra stop bit has a 1/10 effect on the DC
component). However this can be compensated for when the transmitter supports 9-bit data mode by
setting the ninth bit to zero and hence cancelling out the second stop bit.

0 1 1 1

1 0 0 1

a)

b)

© 2002-2009 Summit Electronics Ltd www.summitelectronics.co.uk
Page 3 of 7

Figure 4 RS-232 Logic wave form

RS-232 carries Manchester encoding
All that's required is to insert Manchester encoded data into the RS-232 data bits. There are 4 original
data bits in each RS-232 byte.

Figure 5 shows the start/stop pattern inserted into an RS-232 frame. This pattern is chosen for its
property of not having any 1 to 0 transitions. This means there can be only one real start bit for the UART
to synchronise to.

Figure 5 Start/Stop pattern

Figure 6 a) and b) show the sequences from Figure 2 inserted into two RS-232 frames.

Figure 6 RS-232 frames for the Manchester encoded sequence a) 0111 & b) 1001

Start bit Data bits Stop bits

Start bit Data bits Stop bits

a)

b)

Start bit Data bits Stop bits

Start bit Data bits Stop bits

B0 B1 B2 B3 B4 B5 B6 B7

© 2002-2009 Summit Electronics Ltd www.summitelectronics.co.uk
Page 4 of 7

Finally Figure 7 shows the waveform of the combined frames from Figure 5 & Figure 6.

Figure 7 Combined waveforms

APPLICATION
In this application it is assumed the 'C' functions putc() and getc() directly output or input TTL levels from
a radio transmitter or receiver respectively to a UART.

Start data frame
The data frame is started by transmitting a preamble of start/stop patterns (SS) to the radio receiver. The
number of SS patterns depends on the characteristics of the radio receiver.

In general, enough SS patterns are needed to:

1. Initialise the receiver demodulator.
2. Allow the RS-232 decoder to synchronise to the start bits of each RS-232 byte.*
3. Indicate to the software communications handler that an SS pattern has been received and data

is expected to follow.

* An additional stop bit is inserted at the end of each SS pattern to allow for software implemented RS-
232 decoders (UART) to 'catch up' with the start bit. This may be omitted for hardware UARTs.

The unique SS pattern " 00001111 " (LSB left most) is equivalent to the hex code 0xF0 (LSB right most).
The following 'C' function SendSS() will send a preamble of four SS patterns.

SendSS(void) {
{

putc(0xF0);
 delay_us(500); // *
 putc(0xF0);
 delay_us(500); // *
 putc(0xF0);
 delay_us(500); // *
 putc(0xF0);
 delay_us(500); // *
};
* Additional 500us stop bit based on a bit rate of 2000 bits per second (bps).

The received stream will look similar to the waveform shown in Figure 8 below.

Figure 8 Wave form of start/stop patterns

Start/Stop
pattern

Start/Stop
pattern

Start/Stop
pattern

Start/Stop
pattern

Data: 0111 Data: 1001

© 2002-2009 Summit Electronics Ltd www.summitelectronics.co.uk
Page 5 of 7

Note: In a real-life radio receiver, the absence of a signal from the transmitter will generally result in a
received bit stream of noise (i.e. random 1's and 0's in no recognisable pattern). It's not until the
transmitter is sending a signal that the receiver can 'discriminate' the bit stream. This doesn't really matter
to us, as our Manchester decoder will reject any corrupted data.

Send data
Let's for example send the data byte 0x41. This is encoded into two Manchester encoded RS-232 bytes.

The least significant nibble is transmitted first, working out long hand:

1. 0x41 represented as an LSB first bit stream is: " 1000 0010 "
2. Lower nibble " 1000 " Manchester encodes to: " 10 01 01 01 " (i.e. 0xA9)
3. Upper nibble " 0010 " Manchester encodes to: " 01 01 10 01 " (i.e. 0x9A)

putc(0xA9); // lower nibble
putc(0x9A); // upper nibble

In real life this would be carried out by a routine similar to the one below:

void SendData(BYTE txbyte)
{

int i,j,b,me;

b = txbyte;

for (i=0; i<2; i++) {
 me = 0; // manchester encoded txbyte
 for (j=0 ; j<4; j++) {
 me >>=2;
 if (bit_test(b,0))
 me |= 0b01000000; // 1->0
 else
 me |= 0b10000000; // 0->1
 b >>=1;
 }

putc(me);
 }
}

More data can be sent if required.

End data frame
To end a data frame, a series of 0xF0's are transmitted using the function SendSS():
SendSS();

It could be argued that this is not necessary since the preamble in the next data frame will reset the
communications handler. However the handler can use it as an indicator that the data frame is complete.

Complete frame
The complete frame would be sent with the following 'C' functions:

SendSS();
SendData(0x41);
SendSS();

Note that the SS patterns and data must be sent end-to-end with no gaps other than the inherent start
and stop bits. Failing to do this will almost certainly cause the discriminator in the receiver to produce
erroneous data.

© 2002-2009 Summit Electronics Ltd www.summitelectronics.co.uk
Page 6 of 7

Decoding data
Converting Manchester encoded data back to original data is straight forward and error checking may be
carried out at the same time. Since data arrives 4-bits at a time in Manchester code, a simple shift and
test algorithm can be implemented to retrieve the original data.
The routine below can be used to decode four bit-pairs to one 4-bits of original data:

BYTE DecodeData(BYTE encoded)
{

BYTE i,dec,enc,pattern;

enc = encoded;

if (enc == 0xf0) // start/end condition encountered
 return 0xf0;

dec = 0;
 for (i=0; i<4; i++) {
 dec >>=1;
 pattern = enc & 0b11;
 if (pattern == 0b01) // 1
 bit_set(dec,3);
 else if (pattern == 0b10)
 bit_clear(dec,3); // 0
 else
 return 0xff; // illegal code
 enc >>=2;
 }

return dec;
}

Note that this routine only returns 4-bits of data and therefore has to be called twice by some additional
code, first to retrieve the lower nibble and then again to retrieve the upper nibble. The lower and upper
nibble are then assembled (using a 4-bit shift) to form one byte of original data.

OTHER CONSIDERATIONS
When software generated RS-232 is used for receiving serial data, it is important that the latency
between the start bit and the execution of getc() is kept to a minimum. This is not an issue if getc() is
waiting for serial data, but becomes important when kbhit() is used to determine the presence of a start
bit.
Typically kbhit() is used in a tight loop (see below). The latency is the time round the loop.

while(1) {
 if (kbhit())
 data = getc();
 ...
 some other code executed here
 ...
}

For example if the bit rate is 2000bps, one bit time is therefore 500us. A latency of no more than 50us is
suggested. Higher bit rates require less latency.

Using a PC to send data may have drawbacks due to the non-deterministic nature of the operating
system. i.e. there may be inter character delays in the transmitted data which would no longer satisfy our
requirement that data is sent end-to-end. This technique is therefore most suited to a microcontroller
where there is more control over sending of data.

CONCLUSION
Manchester encoding is suitable for bit streams in radio communications and can be transported using a

© 2002-2009 Summit Electronics Ltd www.summitelectronics.co.uk
Page 7 of 7

standard UART. It is simple to encode, decode and has good error detection and can negate the need for
'check-summed' data. This technique is most suited for microcontrollers.

REFERENCES
1. Gorry Fairhurst, "Manchester Encoding"; www.erg.abdn.ac.uk/users/gorry/course/phy-

pages/man.html

BIBLIOGRAPHY
1. RF Solutions Ltd (www.rfsolutions.co.uk), “AM Super Regenerative Receivers”, Data sheet

DS016.
2. RF Solutions Ltd (www.rfsolutions.co.uk), “AM Hybrid Transmitter”, Data sheet DS013.
3. Custom Computer Services Inc (www.ccsinfo.com), “C Compiler Reference Manual”, July 2003.
4. QuickBuilder (www.quickbuilder.co.uk), “AM RF Transponder”;

www.quickbuilder.co.uk/qb/libs/comms.htm.

Disclaimer:
Although every care has been taken to ensure the accuracy of the information in this article, such
information is provided "as-is" and without any warranty or implied fitness for any purpose. In acting on
any information provided by this article you accept that this is entirely at your own risk and indemnify the
author against any loss or damages, actual or consequential that may occur.

