

 CS F241 - MICROPROCESSOR

PROGRAMMING AND INTERFACING

DESIGN ASSIGNMENT

Group No. : 41

Question No. : 27

Made By-

 Ankit Roy [2016A7PS118P]

 Neethu Mariya Joy [2016A7PS119P]

 Nikhil Aggarwal [2016A7PS120P]

 Adit Shastri [2016A7PS121P]

Problem Statement-

Design a microprocessor based EPROM Programmer to program 2716 and 2764.The EPROM
can be programmed by applying 25V at VPP and 5V at OE pin. Initially all data of EPROM will be
1’s and the user should make the bits zero selectively. Before the EPROM location is programmed
it must be checked for whether it is empty (data in location must be FFH if the location is empty)
The 8- bit parallel data is applied to the data pins of EPROM. The address for the EPROM is to be
provided. To program the address of each location to be programmed should be stable for
45ms.When address and data are stable, a 40ms active high pulse is applied to CE input. After
the EPROM is programmed, IC number is to be displayed on LCD as "27xy programmed".

Assumptions Made-



 Due to limitation of the screen size of the LCD, the outputs will be shown as "27xy PROG".
 We are only using a 12-stage binary counter for convenience. In the case of programming 2764, after

2^12, counter will start again from zero and the circuit will work the same. 
 The frequency of clock input is 200Hz and time for 1 clock is 5ms.



 The data on the data lines is FFh initially.

List of components used:

 IC 2716 - 2k EPROM
 IC 2764 - 8k EPROM
 IC 8253 - Programmable interval timer
 IC 8255 - Programmable peripheral interface
 8086 - Intel x86 microprocessor
 74HC4040 - 12 stage binary counter
 74HCT138 - 3:8 decoder
 LM020L - LCD
 74LS245 - Bidirectional Buffer

Memory Mapping:

 2716: 2000H-27FFH
 2764: 3000H-4FFFH
 8255: 0010H-0016H(used for interfacing LCD)
 8255: 0008H-000EH(used for interfacing ROM)
 8253: 0000H-0006H

Simulation:

 .asm File is created to code the above Problem Statement.

 Then, the coded file is compiled using emu Compiler.

 The generated .com file is simulated in PROTEUS Version 8.1.

NOTE: Since we are using Proteus 8.1, we can’t create .dsn file but, .pdsprj format from Proteus. So, it is

requested to view our files in Proteus 8.1.

Flowchart of the software-

START

Initialize 8253 in mode 3 with clock
frequency 200Hz and count = 17

Initialize 8255 with Port C as input port

 Yes PC0 = 0? No

 Make Port A Make Port B

 o

 as input port as input port

 Read data using Read data using

 Port A Port B

 Check if data = FFH Check if data = FFH

 Make Port A as Make Port B as

 output port output port

 Output 00H on data Output 00H on data

 bus using Port A bus using Port B

 Using 8253 output, make CE' Using 8253 output, make CE'

 low for 45ms and high for low for 45ms and high for

 40ms 40ms

 Increment count on counter Increment count on counter

 on the falling edge of 40ms on the falling edge of 40ms

 pulse pulse

Count < 2^11?

Count < 2^13?

 Print "2716 prog" on LCD Print "2764 prog" on LCD

 STOP STOP

Assembly Language Code for the project-

.model tiny

;8255 for data transfer
cr EQU 0eh ;control register

pa EQU 08h

pb EQU 0ah
pc EQU 0ch

;8255 for LCD
cr1 EQU 16h ;control register

prta EQU 10h

prtb EQU 12h
prtc EQU 14h

;8253
CR2 EQU 06h ;control register

cnt0 EQU 00h

cnt1 EQU 02h
cnt2 EQU 04h

.code

.startup

;initialising 8253
;Set to mode 3

;Counter 0 set to 17 to get 9 low pulses

;and 8 low pulses of 40 millisecs each

MOV AL, 00110110b

OUT CR2, AL
MOV AL, 11h

OUT cnt0, AL

MOV AL, 00h
OUT cnt0, AL

MOV CX,0

; for 8255 1st which we use for data transaction between processor and ROM
MOV AL, 10001001b

OUT cr, AL

IN AL, pc

AND AL, 00000001B ;Here we check whether C0 is set to 1 which indicates

 ;which ROM is being programmed
CMP AL, 00h ;If C0 is zero,ROM1 is being programmed

JZ rom1

rom2:

MOV AL, 10000010b
OUT cr, AL ;control register programmed

loop1: IN AL, pb

 CMP AL,0
 JE loop1 ; to ensure program stops

 ;till address becomes stable

CMP AL, 0ffh ;compare to see whether the location is empty i.e. all 1's

JZ x1

; Nothing done if location doesn't have FFh

x1: MOV AL, 80h

OUT cr, AL
MOV AL, 00h

OUT pb, AL

INC CX

;compare count with maxcount so that the loop can be exited if all the locations have been accessed

CMP CX,07ffh
JNZ rom2

JZ lr2

rom1:

MOV AL, 10010000b

OUT cr, AL

loop2 : IN AL,pa
 CMP AL,0

 JE loop2 ; to ensure program stops

 ;till address becomes stable

CMP AL, 0ffh ;compare to see whether the location is empty i.e. all 1's

JZ x2

; Nothing done if location doesn't have FFh

x2: MOV AL, 80h
OUT cr, AL

MOV AL, 00h

OUT pa, AL
INC CX

;compare count with maxcount so that the loop can be exited if all the locations have been accessed

CMP CX,1FFFh

JNZ rom1

JZ lr1

lr1:

 ;writing on the command register for initialization

 CALL BEG_LCD ;calling lcd initialization
 CALL RITE_2716

 JMP lastcode

RITE_2716 PROC NEAR

 CALL CLS

 MOV AL, '2' ;display 2
 CALL RITEDATA ;give to LCD

 CALL DLAY ;wait before giving next character

 CALL DLAY ;wait before giving next character
 MOV AL, '7' ;display 7

 CALL RITEDATA ;give to LCD

 CALL DLAY ;wait before giving next character
 CALL DLAY ;wait before giving next character

 MOV AL, '1' ;display 1

 CALL RITEDATA ;give to LCD
 CALL DLAY ;wait before giving next character

 CALL DLAY ;wait

 MOV AL, '6' ;display 6
 CALL RITEDATA ;give to LCD

 CALL DLAY ;wait before giving next character

 CALL DLAY ;wait
 MOV AL, ' ' ;display space

 CALL RITEDATA ;give to LCD

 CALL DLAY ;wait before giving next character
 CALL DLAY ;wait

 MOV AL, 'P' ;display P

 CALL RITEDATA ;give to LCD
 CALL DLAY ;wait before giving next character

 CALL DLAY ;wait

 MOV AL, 'R' ;display R
 CALL RITEDATA ;give to LCD

 CALL DLAY ;wait before giving next character

 CALL DLAY ;wait
 MOV AL, 'O' ;display O

 CALL RITEDATA ;give to LCD

 CALL DLAY ;wait before giving next character
 CALL DLAY ;wait

 MOV AL, 'G' ;display G

 CALL RITEDATA ;give to LCD

 CALL DLAY ;wait before giving next character

 CALL DLAY ;wait
 RET

RITE_2716 ENDP

lr2:

 ;writing on the command register for initialization

 CALL BEG_LCD ;calling lcd initialization

 CALL RITE_2764
 JMP lastcode

BEG_LCD PROC NEAR

 MOV AL, 38H ;initialize LCD

 CALL CORITE ;write the command to LCD
 CALL DLAY ;wait before giving next command

 CALL DLAY ;

 CALL DLAY
 MOV AL, 0EH ;send command for LCD on, cursor on

 CALL CORITE
 CALL DLAY

 MOV AL, 01 ;clear LCD

 CALL CORITE
 CALL DLAY

 MOV AL, 06 ;command for shifting cursor right

 CALL CORITE
 CALL DLAY

 RET

BEG_LCD ENDP

CLS PROC

 MOV AL, 01 ;clear LCD
 CALL CORITE

 CALL DLAY

 CALL DLAY
 RET

CLS ENDP

CORITE PROC ;this procedure writes commands to LCD

 MOV DX, prtA

 OUT DX, AL ;send the code to prt A
 MOV DX, prtB

 MOV AL, 00000100B ;RS=0,R/W=0,E=1 for H-To-L pulse

 OUT DX, AL
 NOP

 NOP

 MOV AL, 00000000B ;RS=0,R/W=0,E=0 for H-To-L pulse
 OUT DX, AL

 RET

CORITE ENDP

RITE_2764 PROC NEAR

 CALL CLS
 MOV AL, '2' ;display 2

 CALL RITEDATA ;give to LCD

 CALL DLAY ;wait before giving next character
 CALL DLAY ;wait before giving next character

 MOV AL, '7' ;display 7

 CALL RITEDATA ;give to LCD
 CALL DLAY ;wait before giving next character

 CALL DLAY ;wait before giving next character

 MOV AL, '6' ;display 6
 CALL RITEDATA ;give to LCD

 CALL DLAY ;wait before giving next character

 CALL DLAY ;wait
 MOV AL, '4' ;display 4

 CALL RITEDATA ;give to LCD

 CALL DLAY ;wait before giving next character
 CALL DLAY ;wait

 MOV AL, ' ' ;display space

 CALL RITEDATA ;give to LCD
 CALL DLAY ;wait before giving next character

 CALL DLAY ;wait

 MOV AL, 'P' ;display P

 CALL RITEDATA ;give to LCD

 CALL DLAY ;wait before giving next character
 CALL DLAY ;wait

 MOV AL, 'R' ;display R

 CALL RITEDATA ;give to LCD
 CALL DLAY ;wait before giving next character

 CALL DLAY ;wait

 MOV AL, 'O' ;display O
 CALL RITEDATA ;give to LCD

 CALL DLAY ;wait before giving next character

 CALL DLAY ;wait
 MOV AL, 'G' ;display G

 CALL RITEDATA ;give to LCD

 CALL DLAY ;wait before giving next character
 CALL DLAY ;wait

 RET

RITE_2764 ENDP

RITEDATA PROC

 PUSH DX ;save DX
 MOV DX,prtA ;DX=prt A address

 OUT DX, AL ;issue the char to LCD

 MOV AL, 00000101B ;RS=1, R/W=0, E=1 for H-to-L pulse
 MOV DX, prtB ;prt B address

 OUT DX, AL ;make enable high
 MOV AL, 00000001B ;RS=1,R/W=0 and E=0 for H-to-L pulse

 OUT DX, AL

 POP DX
 RET

RITEDATA ENDP ;writing on the lcd ends

;delay in the circuit here the delay of 20 millisecond is produced

DLAY PROC

 MOV CX, 1325 ;1325*15.085 microsec = 20 msec
 W1:

 NOP

 NOP
 NOP

 NOP

 NOP
 LOOP W1

 RET

DLAY ENDP

lastcode: NOP

.exit

END

__

Circuit Diagram-

__END___

REFERENCES:

 Datasheet of LCD(LM020L)-- www.datasheetspdf.com/datasheet/LM020L.html

