
The New MCU On The Block:

The AVR is the only new 8-bit MCU architecture the world has seen in the past 10 years. One
could always ask “why?”, as the question is quite relevant, but the answer is not given here. One
explanation can be eliminated, though; that MCU architectures widely used today are good
enough in most cases. As a matter of fact, they are not, and they will definitely not be good
enough in the future, considering the increasing demand for higher instruction throughput and
lower power. Over the past decade, semiconductor technology has improved vastly. Despite this
and the fact that there has been and always will be a constant need for higher performance, 8-bit
MCU technology is for some reason lagging behind. Expensive and slow architectures that were
developed 15 - 20 years ago dominate the market. With the AVR, the state of the art technology
of today is combined with all the advantages of different architectures into one single MCU
design. The design goal was clear; to bring MCU customers an architecture that is better than
anything else available.

The AVR architecture exceeds other 8-bit MCUs in the following areas:

• Highest Performance
• Lowest Power Consumption
• Most Compact Assembly Code
• Most Compact C Code
• In-System Programmable Flash Program Memory
• In-System Programmable EEPROM Data Memory
• Best price/performance ratio

The Architecture in General
Figure 1 shows a general block diagram of AVR Enhanced RISC Architecture. The design is an
enhanced Harvard architecture with separate buses and address spaces for Program and Data
memories. With 32 general purpose working registers, true single cycle execution and
downloadable Flash and EEPROM memory, this MCU concept offers denser code, higher
throughput, and more flexible programming solutions than any other 8-bit MCU available.

32 General Purpose Working Registers
In the late 70s and early 80s when several of today’s widely spread architectures were
developed, the gate count per silicon area unit was significantly lower than today. Especially the
number of data registers, which are costly in terms of silicon area, had to be kept as low as
possible. As a result of this most MCUs developed in this period has only one general purpose
working register - the accumulator. This concept has for some reason survived for 20 years, and
is still found in the majority of microcontrollers available. Considering the shrinkage of silicon
structures that has taken place over the past two decades, more than one accumulator can now
be implemented without penalties. When the AVR was designed, Atmel equipped the MCU with
the generous count of 32 accumulators. They are called “General Purpose Working Registers”
and the block of 32 is referenced as the “Register File”. This very important feature eliminates the
frequent transfer of data in both directions between the Data memory and the accumulator. In an
average program for an accumulator-based MCU, this data transfer occupies a significant amount
of the total code. Data handled at the moment can reside in a 32 byte register file where the CPU
has direct access to all of them at any time. As a result, a significant amount of unnecessary code
can be removed in both C and Assembly programs.

Figure 1: AVR Architecture

Single Cycle Execution
Not only will an AVR program contain fewer instructions than programs for other microcontrollers,
but the time to execute each instruction is only a fraction of what other MCUs require. A direct
connection between the register file and the ALU enables true single cycle execution. In addition,
all instructions are 16 bits long, hence the MCU does not have to decode the first byte in the
instruction to decide how many more to fetch. The instruction fetch and execute is also pipelined,
which means that during execution of one instruction, the next one is fetched from the Program
memory. Additionally, conventional MCUs use an internal clock divider when instructions are
fetched and executed. With the AVR, however, most instructions take exactly one single Crystal
Oscillator period. The resulting throughput increase is 400 - 1400% compared to conventional
MCUs. The combination of single cycle instruction execution and the lack of an internal clock
divider yields an 8-bit MCU with unparalleled performance, and gives the user the ability to utilize
the tremendous instruction bandwidth to its fullest, or tradeoff between clock frequency and
power consumption.

Many 8-bit MCU users see their performance requirements growing beyond the capabilities of the
architecture they have lived with for years. A solution commonly considered is switching to a 16-
bit version of the same old architecture that is currently imposing limitations to creative product
improvements. In this case, the penalty for a performance increase is larger code and hence
more memory plus a more expensive MCU. By changing to the AVR, you can significantly
increase your applications’ performance, use less program memory, eliminate external non-
volatile memory devices, reduce power consumption and lower your total cost.

A Simple Comparison
On the next few pages you’ll see an example of how the AVR MCU compares with one of the
currently popular 8-bit architectures, the Microchip PIC. It is not meant to be an exhaustive
analysis but a straightforward architectural comparison, to illustrate the features and benefits of
the AVR MCU.

ATMEL AVR vs. MICROCHIP PIC FACT SHEET

Introduction to the AVR MCU Families

FEATURE COMMENTS AVR MCU MICROCHIP PIC
Complete family • Family divided into two

families, depending on
Program Memory size:

• ClassicAVR: 1KB to
8KB, of which 6 are in
production

• MegaAVR: 16KB to
128KB, of which the first
is in production

• All devices are in-system
programmable using the
supply voltage, down to
2.7V.

ClassicAVR:
AT90S1200, AT90S2313,
AT90S2323, AT90S2343,
AT90S4414, AT90S8515

MegaAVR:
ATMEGA103

Memory Comparisons

Program Memory • The important factor is
memory cost per byte

• In actual applications, the
AVR MCU requires fewer
bytes to implement the
same program

• Memory organization is
irrelevant; the cost
depends on silicon area

AT90S1200 = 1024 bytes
AT90S2313 = 2048 bytes
AT90S2323 = 2048 bytes
AT90S2343 = 2048 bytes
AT90S4414 = 4096 bytes
AT90S8515 = 8192 bytes

ATMEGA103 = 128K bytes

PIC16C54 = 768 bytes
PIC16C56 = 1536 bytes
PIC16C58A = 3072 bytes

PIC16C620 = 896 bytes
PIC16C621 = 1792 bytes
PIC16C622 = 3584 bytes

PIC16CXXX
0.5KB – 14KB

PIC17CXXX:
4 KB – 32KB

Data Memory
(SRAM,
EEPROM and on-
chip registers).

• General Purpose Registers
are also Data Memory

• Total volatile memory is
SRAM size and on-chip
registers.

• All AVR devices have 32
registers

• On-chip EEPROM
memory sizes shown.

• All AVR Controllers have
Data EEPROM

• AVR can run from
program memory while
writing EEPROM

AT90S1200 = 32 bytes
AT90S2313 = 160 bytes
AT90S2323 = 160 bytes
AT90S2343 = 160 bytes
AT90S4414 = 288 bytes
AT90S8515 = 544 bytes
ATMEGA103 = 4128 bytes

AT90S1200 = 64 bytes
AT90S2313 = 128 bytes
AT90S2323 = 128 bytes
AT90S2343 = 128 bytes
AT90S4414 = 256 bytes
AT90S8515 = 512 bytes
ATMEGA103 = 4096

PIC16C54 = 25 bytes
PIC16C56 = 25 bytes
PIC16C58A = 72 bytes

PIC16C620 = 80 bytes
PIC16C621 = 80 bytes
PIC16C622 = 128 bytes

PIC16CXXX = 0 bytes
PIC16FXXX = 64 bytes
PIC17CXXX = 0 bytes

FEATURE COMMENTS AVR MCU MICROCHIP PIC

Code Efficiencies, Instruction Throughput and Interrupt Sources
Number of clocks
per instruction
(average) or
throughput of
number of clock
normalized

• Single cycle execution is
important

• Analysis performed by the
AVR Core development
team when tuning the
instruction set

• Figures determined by
analyzing 20-30 programs,
obtained from actual
applications

• Microchip’s 4.84
clocks/instruction assumes
that all instructions are
used in equal amounts.
This is not the case in real
applications

One Instruction Cycle is one
cycle of the external oscillator

AVR does not divide the
XTAL clock

One Instruction cycle is four
cycles of the external
oscillator

Microchip PIC divides the
XTAL Clock by 4

Assembly code
efficiency (in
number of bytes)

• High efficiency equals low
memory cost

• High Efficiency through:
• More instructions
• 32 registers

(accumulators)
• Linear memory

maps with no
paging

• Analysis performed by the
AVR Core development
team when tuning the
instruction set

• Figures determined by
analyzing 20-30 programs,
obtained from actual
applications

• We compare byte by byte

AVR = 1.0 PIC15C5X = 1.6

FEATURE COMMENTS AVR MCU MICROCHIP PIC
AVR single clock
cycle execution

• One AVR instruction cycle
is one XTAL clock cycle

• One PIC instruction cycle
is four XTAL clock cycles

• Allows throughput to be
traded for lower frequency

• Lower operating frequency
equals lower power
consumption

All AVR devices share the
same instruction set (the
AT90S1200 does not have
instructions related to
SRAM). Some instruction
cycle examples:

AT90S1200: 89 instructions
1 cycle: 55 instructions
1\2 cycles: 25 instructions
2 cycles: 5 instructions
3 cycles: 2 instructions
4 cycles: 2 instructions

AT90S2313: 120 instructions
1 cycle: 57 instructions
1\2 cycles: 25 instructions
2 cycles: 30 instructions
3 cycles: 6 instructions
4 cycles: 2 instructions

PIC16C5X: 33 instructions
4 cycles: 26 instructions
4\8 cycles: 4 instructions
8 cycles: 3 instructions

PIC16C62X: 35 instructions
4 cycles: 26 instructions
4\8 cycles: 4 instructions
8 cycles: 5 instructions

Interrupt Sources AT90S1200 = 3
AT90S2313 = 10
AT90S2323 = 10
AT90S2343 = 10
AT90S4414/8515 = 13
ATMEGA103 = 23

PIC16C5X = None
PIC16C62X =4

Architecture Comparison
Instruction Set • More instructions

• More powerful
instructions

• AVR is always more code
efficient

• C-Code compiles very
efficiently

• The entire AVR Data
Memory is in the same
page, no paging in Data
Memory required

• The entire AVR Program
Memory is in the same
page, no paging in
Program Memory required

AT90S1200: 89 instructions
classicAVR: 120 instructions
megaAVR: 120 instructions

Data Memory Address Reach:
classicAVR: 64 KB
megaAVR: 8 MB

No paging required

33 instr for 12-bit word MCU
15 instr for14-bit word MCU
58 instr for 16-bit word MCU

Data Memory Address Reach:
PIC16C5X = 512 bytes
PIC16CXXX = 512 bytes
PIC17CXXX = 512 bytes
The Data Memory is available
in 4 pages of 128 bytes

FEATURE COMMENTS AVR MCU MICROCHIP PIC
Stack • AVR Stack size limited by

RAM size only
• AT90S1200 uses a

hardware stack, as there is
no onboard RAM for a
regular stack

• Stack in both internal and
external RAM

Limited to RAM Size for all
AVRs:
AT90S1200: 3 levels
AT90S2313: 128 levels
AT90S2323: 128 levels
AT90S2343: 128 levels
AT90S4414: 32720 levels
AT90S8515: 32720 levels
ATMEGA103: 32720 levels

PIC16C5X: 2 levels
PIC16CXXX: 8 levels
PIC17CXXX: 16 levels

Upward
Migration &
Registers

• Same architecture in all
AVR devices

• Same instruction set in all
AVR devices

• Code written for
AT90S1200 will run on
any device, without
modifications

• The register file is always
the preferred storage for
any variable

• Adding RAM to an
AT90S1200 design is not
a problem - just start using
the RAM as it becomes
necessary

Moving to a larger AVR:
Same instruction set
Same architecture
Same memory map
Same I/O registers

Moving to a larger PIC:
New instruction set
New memory map

Register Space
(I/O)

• AVR I/O Registers are
mapped in Data Memory

• Number of I/O registers
limited to by the
maximum data address
reach

• 64 I/O Registers are read
and written in a single
clock cycle using ‘in/out’
instructions

• More than 64 I/O
Registers are accessed
with two cycle ‘LD/ST’
instructions

Limited to Memory Address
Reach:
ClassicAVR: 65504 I/O
registers
MegaAVR: 8388576 I/O
registers

No paging required

Limited to Memory Address
Reach:
PIC16C5X: 32-128 registers
PIC16CXXX: 512 registers
PIC17CXXX: 512 registers

Available in 4x128 byte pages

Register Set • The 32 General Purpose
Registers are all
accumulators

• 32 Registers eliminate 50-
90% of the regular RAM
accesses required to move
data to and from the
accumulator

32 accumulators 1 accumulator

FEATURE COMMENTS AVR MCU MICROCHIP PIC
Register Set
Continued (I/O)

• Direct I/O manipulation in
all AVR parts with SBI,
CBI, SBIS and SBIC
instructions

• All AVR parts support
direct peripheral
manipulation

• Three addresses per I/O
port gives true Read-
Modify-Write operations

• Special instructions are
available for faster I/O
Register access

• The I/O Memory is also
mapped into regular data
memory, and can be
accessed without special
instructions

Register Set
Continued
(Interrupts)

• AVR Interrupt Flags are
cleared by writing a ONE

• Writing a ZERO to an
AVR Interrupt Flag leave
the flag unaltered

• Efficient and elegant
handling of Interrupt
Flags

• Any flag cleared in two
cycles

Time to clear an interrupt
flag:
2 clock cycles

Time to Clear an Interrupt
Flag:
4 clock cycles

Program Counter • Instruction Set handles
any modification of PC

• Writing PC with
ICALL/IJMP at any time

• PC updated with one
instruction

• Reading PC is never
necessary, current location
is far better determined at
compilation time

Easy modification of PC

FEATURE COMMENTS AVR MCU MICROCHIP PIC
Read Program
Memory (LPM /
Lookup Tables)

• The 16-bit wide AVR
Program Memory stores
exactly 2 bytes in each
location,

• Size optimal
implementation of lookup
tables in flash, no padding
bits wasted

• Size optimal
implementation of lookup
tables sin EEPROM

• EEPROM interface
optimal for lookup tables

• All devices support lookup
tables in EEPROM,
including AT90S1200
without LPM instruction

• Any device can read
constants Flash in one
cycle using the LDI
instruction, including the
AT90S1200

Size optimal lookup tables in
all devices, in EEPROM
Memory

Reading constants from Flash
supported in all devices

Size optimal lookup tables in
Flash in all devices with
‘LPM’ Instruction

Inefficient Padding-bits waste
storage space in program
memory lookup tables:

12-bit instruction word
MCUs:
4 padding bits for each byte
stored (50% waste added)

14-bit instruction word
MCUs:
6 padding bits for each byte
stored (75% waste added)

C-Compiler • AVR Instruction Set and
Architecture optimized for
high level language
compilers, using Industry
Standard ANSI C for
benchmarking

• AVR now has the most
Code efficient 8-bit C-
compiler available

• Fully compliant AVR
ANSI C compiler

• All three software pointers
X, Y and Z can be
manipulated directly, as
they are located in the
General Purpose Register
file.

• Global integer
modifications are handled
by the C Compiler.
Modifying the Return
Address Stack pointer is
handled like any other
global integer update, by
temporarily disabling the
interrupts.

C-Compiler:
• Support Industry Standard

ANSI C
• Very High Efficiency
• Both local and global

variables

C-Compiler:
• Does not support Industry

Standard ANSI C
• Poor efficiency
• Global variables only

