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ISFETs (ion-sensitive field-effect tran-
sistors) are useful for measuring the
acidity of fluids. Accurate measure-

ments require that the ISFET’s bias con-
ditions (I

D
and V

DS
) be held constant

while the gate is exposed to the fluid un-
der test. The acidity of the fluid changes
the channel width, resulting in a gate-
source voltage, V

GS
, that is proportional

to the fluid’s pH. A recently published
Design Idea shows a biasing circuit for
the ISFET (Reference 1). The circuit in
Figure 1 provides a simpler and more
accurate implementation. Voltage V

A

sets I
D
, the drain current, through ISFET

Q
1
, while voltage V

B
sets V

DS
, the drain-

source voltage across Q
1
. Both AD8821

high-precision instrumentation ampli-
fiers, IC

1
and IC

2
, are configured for uni-

ty gain. IC
3
, the AD8627 precision JFET-

input amplifier, buffers the drain
voltage, V

D
, ensuring that all of the

current flowing through R
1

flows
through Q

1
.

To control I
D
, amplifier IC

1
forces the

differential voltage between its output
and the reference input to equal its dif-
ferential input voltage, V

A
. Because the

sensed differential voltage is equal to the
voltage across R

1
, I

D
�V

A
/R

1
. With R

1 
set

to 20 k�, I
D

scales to 50 �A/V. Similarly,
amplifier IC

2
forces the differential volt-

age between its output and the reference
input to equal its differential input volt-
age, V

B
, thus forcing V

DS 
to equal V

B
.

(Note: If your design does
not require independent
adjustment of V

DS
and I

D
,

the circuit can operate
from a single control volt-
age. Tie V

A
and V

B
togeth-

er and drive it with the de-
sired voltage V

DS
. R

1 
is then

equal to V
DS

/I
D
.) The volt-

age of interest, V
GS

, ap-
pears between the gate
voltage and the output of
IC

2
. A useful fea-

ture of this circuit
is that the current source
floats, enabling the gate
voltage to connect to any

voltage within the common-mode range
of the circuit. For this circuit, the range
of V

G
is (V

A
�2�V

EE
)�V

G
�(V

CC
�2�

V
A
).
Figure 2 shows the advantage of the
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Circuit provides ISFET-sensor bias
Brian Harrington, Analog Devices, Wilmington, MA
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This circuit provides ideal bias for an ISFET, a sensor used to measure fluid acidity. 
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This configuration shows the advantage of the floating gate
when the circuit of Figure 1 connects to an ADC.
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Low-cost microprocessor supervi-
sors reset controllers when power-
supply voltages fall below given lev-

els. As added protection, you can also
reset the microcontroller when the pow-
er supply is too high by combining a
low-cost shunt-voltage regulator with a
supervisor that has a manual reset input.
A simple overvoltage/undervoltage-pro-
tection circuit is easy to make (Figure 1).
The circuit’s output is active (low) when
the monitored supply voltage, V

CC
, is

outside a predefined range. After the
supply voltage returns to within the
functioning limits, the reset output,
RST, remains active for a minimum of
140 msec. This interval gives the system

time to stabilize before you remove the
reset. The threshold voltage of the
CAT811 microprocessor reset circuit,
IC

2
, sets the lower limit of the voltage

range, V
LOW

. This threshold can be 2.32
to 4.63V using standard products. Cus-
tom threshold devices with thresholds as
low as 1.8V are also available. The 1.24V
CAT431L shunt regulator, IC

1
, and two

resistors, R
1

and R
2
, set the upper limit,

V
HIGH

: V
HIGH

�V
REF

(1�R
1
/R

2
), where

V
REF

is the internal reference voltage of
IC

1 
(V

REF
�1.24V). The maximum

V
HIGH

that you can set is 5.5V, and
the maximum supply voltage is 9V.

This design uses the CAT811 super-
visor with a threshold voltage of 4.63V
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Microprocessor supervisor and regulator 
form in-range voltage monitor
Ilie Poenaru and Sabin Eftimie, Catalyst Semiconductor, Bucharest, Romania

This simple circuit uses a microprocessor super-
visor and a shunt regulator to form an over-
voltage/undervoltage-protection circuit.
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As the supply voltage rises into range, the reset pin in Figure 1
becomes active low.

F igure  3

As the supply voltage falls into range, the reset pin in Figure 1
becomes active low.

floating gate when the circuit is connect-
ed to the AD7790 differential-input sig-
ma-delta ADC. The gate voltage connects
directly to the ADC’s reference. The only
signal-conditioning circuitry required
between V

S 
or V

G
and the ADC’s input is

a simple RC filter. The 0.1% error in re-

sistor R
1

dominates the current-source
errors for currents higher than 1 �A and,
therefore, are less than 250 nA for drain
currents as high as 250 �A. The V

DS
er-

rors originate from the gain error of IC
3

and input offset voltages of IC
2

and IC
3
.

The error in drain-source voltage is less

than 450 �V for drain-source voltage as
high as 2V.�

Reference
1. Casans, S, AE Navarro, and D Ra-

mirez,“Circuit forms novel floating cur-
rent source,” EDN, May 1, 2003, pg 92.
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for tests. The upper limit of the voltage
range is 5.5V using a 10-k� poten-
tiometer with R

1
�7.75 k� and

R
2
�2.25 k�. As the supply voltage ris-

es into range, the reset pin becomes ac-

tive (low) for a minimum of 140 msec
(Figure 2). When the supply voltage
falls into range, the reset pin also be-
comes active (low) for a minimum of
140 msec (Figure 3). A reset signal as-

serts when the supply voltage increases
out of range (Figure 4). A reset signal
also asserts when the supply voltage
falls out of range (Figure 5).�

The reset signal in Figure 1 asserts when the supply voltage
increases out of range.

The reset signal in Figure 1 asserts when the supply voltage
falls out of range.

The circuit of Figure 1 is designed
for portable-power applications that
require white LEDs with adjustable,

logarithmic dimming levels. The circuit
drives as many as four white LEDs from
a 3.3V source and adjusts
the total LED cur-
rent from 1 to 106
mA in 64 steps of 1 dB
each. The driver is a
charge pump that mirrors
the current I

SET
(sourced

from IC
3
’s SET terminal)

to produce a current of
(215�I

SET
�3%) through

each LED. Internal cir-
cuitry maintains the SET
terminal at 0.6V. To con-
trol the LED brightness,
op amp IC

2
monitors the

difference between the
high-side voltage and the

wiper voltage of digital potentiometer
IC

1
. The op amp then multiplies that

voltage by a gain to set the maximum
output current. Zero resistance at the
potentiometer’s W1 terminal corre-

sponds to minimum LED current and,
therefore, minimum brightness. Because
the SET voltage is fixed at 0.6V, any volt-
age change at the left side of R

5
changes

I
SET

, and the resulting change in LED
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White-LED driver provides 
64-step logarithmic dimming
William Hadden, Maxim Integrated Products, Sunnyvale, CA

This circuit provides a logarithmic-function dimming
capability for white LEDs.
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currents alters their brightness level. R
5

sets the maximum LED current:
R

5
�215�0.6/I

LED(DESIRED)
, where I

LED
is

the current through one LED.
IC

1
is a digital potentiometer with a log-

arithmic taper and an analog-voltage
wiper. Each wiper tap corresponds to 1 dB
of attenuation between H1 and W1 (pins
11 and 9). The IC contains two poten-
tiometers controlled by a 16-bit code via a
three-wire serial interface. To set the
LED current, drive RST high and
clock 16 bits into the D terminal of IC

1
,

starting with the LSB. Each pulse at CLK

enters a bit into the register. The circuit
uses only one potentiometer, so bits 0
through 7 are “don’t-care” bits. Bits 8
through 14 determine the wiper position:
Bits 8 through 13 set the code, and bit 14
is “mute.”(Logic one at bit 14 produces the
lowest possible output current by setting
the left side of R

5 
at approximately 0.599V.)

After entering all 16 bits, enter the code
and change the brightness level by driving
RST high. Figure 2 shows the logarithmic
relationship between an LED current and
the potentiometer’s input code.�
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LED current versus input code changes for the
circuit in Figure 1.
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Overvoltage-protection
circuits often protect elec-
tronic devices from pow-

er-supply transients, such as a
rise from plugging in batteries
or an external power adapter.
Although these devices tradi-
tionally find use as hysteretic
switching controllers, you can
reconfigure the LM3485 (Fig-
ure 1) to provide a robust
overvoltage-protection
circuit.

By selecting the feedback re-
sistors using the formula V

IN
�

1.252(R
1
�R

2
)/R

2
, you can program the

IC to trip off at any level from 4.5 to 35V.
In Figure 1, R

1
and R

2 
turn off the PFET

when V
IN

exceeds 13.8V. You can calcu-
late the hysteresis using the formula
V

HYS
�0.01(R

1
+R

2
)/R

2
. In this example,

the expression calculates a hysteresis of
110 mV. The accompanying oscilloscope
plot of V

OUT
versus V

IN
shows the sam-

ple circuit with a hysteresis of roughly
800 mV (2V/division, 0V level at lowest
line, 500 nsec/division). Why isn’t it 110
mV as calculated? We measured
the turn-off propagation delay of
the sample circuit at approximately 450
nsec, almost one complete time division,
whereas the turn-on propagation delay
was only 70 nsec (all measured using a
40� load). By taking these propagation

delays into account, the scope plot ap-
proaches the calculated hysteresis and
13.8V trip level. However, compare these
times with competing ICs with larger

typical propagation delays of
500- to 6000-nsec turn-off
times and 1800- to 7000-�sec
turn-on times. The improved
propagation delay is a result of
the LM3485’s driver, which can
sink 320 mA and source 440
mA, as opposed to other over-
voltage-protection circuits,
which sink only approximately
60 mA.

The LM3485 also has an ad-
justable overcurrent-protec-
tion feature. In the sample cir-
cuit, when the current exceeds

1.1A, the LM3485 turns off the FET. Af-
ter 9 �sec, the LM3485 turns back on
the FET and begins sensing the current
again through the FET’s on-resistance.
For more precise current sensing, add
an external current-sense resistor be-
tween the FET and V

IN
and then move

the I
SENSE

line of the LM3485 over to 
the source of the FET. The sample cir-
cuit in Figure 1 is derived from the stan-
dard LM3485 evaluation board. You can
easily modify this board to create an
overvoltage-protection circuit by re-
moving a few components—the induc-
tor, the diode, and the C

FF
capacitor—

by moving the feedback line from V
OUT

to V
IN

, and by selecting suitable resistor
values.�
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Switcher improves overvoltage-protection circuit
Jason Rubadue, National Semiconductor, Thornton, CO

A hysteretic switching controller can do double duty as an overvolt-
age-protection circuit.

This plot shows the hysteresis
and the overvoltage trip point.

F igure  2

30

25

20

15

10

5

0
64 48 32

CODE

ILED
(mA)

16 0



102 edn | June 10, 2004 www.edn.com

ideasdesign

_

+
IC1

R2
1.2M

R3
560

R5
220k

R6
1.2k

R7
1.2k

R8
10k

R11
10M

R19
10k

R20
1k

R18
1.2k

R21
1.2M

C10
0.1 �F

C9
0.1 �F

C8
2000 pF

C7
0.01 �F

R12
150

R13
10k

R17
100

R16
2.7k

R15
50k

C3
0.1 �F

R9
5k

C4
0.1 �F

R10
47k

C2
0.1 �F

R4
560

Q1
2N5485

Q2
2N3904

R1
10M

AC 
INPUT

12V

12V 12V 12V

OFFSET
ADJUST

GAIN
ADJUST

–12V

–12V

12V

–12V

D 2

3

4

1

1

7

8

LM306S

C1
0.1 �F

D1
1N4148

–12V

2

3

12

13

14

¼TL084
_

+
IC2A

5

6

11

4

¼TL084
_

+
IC2B

10

DC
OUTPUT

9

8

_

+
IC2C

¼TL084

_

+
IC2D

¼TL084

R14
560k

D2
SD101C

D3
SD101C

C6
3.3 �F

C5
0.1 �F

HIGH-IMPEDANCE 
BUFFER

7

F igure  1

This circuit provides precision peak detection,
using no precision components.

When you need a precision peak
detector, you would usually im-
plement it with one or several op

amps and a few other associated compo-
nents. This technique usually works well
unless your design requires operation
higher than a few kilohertz. In designs re-
quiring such operation, the accuracy of
the circuit severely deteriorates unless at
least one of the amplifiers has a high slew
rate and frequency response extending to
tens or even hundreds of megahertz. Per-
formance depends on the desired fre-
quency response and peak-to-peak in-
put-voltage range of the peak detector
(Reference 1). The circuit in Figure 1
uses a moderately fast, inexpensive com-
parator instead of a high-slew-rate op
amp to implement the peak detector.
This circuit provides wide bandwidth
and high accuracy without the use of pre-
cision components, and it’s simple and
inexpensive—about $3.50 (1000).

The high-input-impedance FET
source follower, Q

1
, and the associated

circuitry enclosed by the dotted line in
Figure 1 buffer the input to the com-
parator. This buffer is essentially the de-
sign published in Reference 2. Op amp
IC

2D
forces the dc voltage at the input to

the comparator at the junction of D
1 
and

R
3

to be equal within a few millivolts to
the dc voltage at the FET gate. If the peak
detector has a driver with an impedance
of less than approximately 150�, you can
eliminate the buffer in the dotted-line
box. However, as the source impedance
increases, the accuracy of the peak detec-
tor decreases if you don’t use the buffer.
An LM306 comparator, IC

1
, provides suf-

ficient speed and current to charge the
holding capacitor, C

3
, over an input range

of 25 Hz to more than 1 MHz, with an in-
put-voltage range of 500 mV peak to
more than 4V peak. The comparator ex-
hibits a few millivolts of hysteresis, which

improves its switching speed and pre-
vents random oscillation when its input
voltage is in its linear range.

This circuit works by essentially creat-
ing its own reference for the negative in-
put of the comparator. If the voltage on
the positive input of the comparator is
greater than the voltage at the negative in-
put, the comparator’s output goes high
and charges capacitor C

3
until the voltage

on the capacitor is a few millivolts greater
than the voltage on the positive input.
Then, the comparator stops charging C

3

until the cycle repeats. This action en-
sures that the voltage on holding capaci-
tor C

3
is nearly equal to the peak voltage

at the input to the comparator. Schottky
diodes D

2
and D

3 
couple the output to the

holding capacitor, C
3
. The feedback from

the output of IC
2A

to the junction of D
2

and D
3

keeps D
3

biased to 0V when it is
off, thereby preventing reverse leakage
through D

3 
(Reference 2). The feedback

Precision peak detector uses no precision components
Jim McLucas, Longmont, CO



104 edn | June 10, 2004 www.edn.com

ideasdesign

also provides reverse bias to D
2

when the
output of the comparator is pulled low.
The IC

2A
FET-input op amp has low in-

put-bias current, so it does not discharge
C

3
between charging pulses. IC

2C
buffers

the negative input of the comparator for
the same reason. The 10-M� resistor, R

11
,

provides sufficient discharging of C
3

so
that the dc output from IC

2B
decay to a

negligible level in two to three seconds af-
ter removal of the ac-input signal.

R
13

and C
6

filter the dc output to re-
move most of the noise that the com-
parator causes. R

14
provides a small

amount of attenuation of the dc output,
so that R

15
can provide approximately

�2% adjustment of the dc output. For
best precision, set R

15
for minimum gain

and apply a 500-mV, 10-kHz signal to the
input. Adjust R

9
for 500-mV dc output.

Then, apply a 4V, 10-kHz signal and ad-
just R

14
for 4.010V-dc output. Check and

repeat these two adjustments if neces-

sary. If a precision ac source is not avail-
able, you can use an accurate dc source
and a high-impedance voltmeter for cal-
ibrating the circuit. Apply 500-mV dc to
the input and adjust R

9
for 499 mV at Pin

10 of IC
2
. Then, apply 4V dc to the input

and adjust R
15

for 3.980V output (Pin 8
of IC

2
). The maximum peak input volt-

age is approximately 5V, because the
maximum input-voltage specification
for the LM306 is �7V. The accuracy of
the circuit decreases when the input peak
is higher than 4V. Remember to use a
blocking capacitor in series with the in-
put if the signal to be measured includes
a dc offset that can cause the peak input

voltage to exceed approximately 5V.
Table 1 shows measured results for the
circuit. If desired, you can delete R

9
, R

10
,

R
14

, R
15

, and R
16

from the circuit and still
obtain good performance.�

References
1. Simpson, Chester, “Fast amplifiers

simplify ac measurement,” EDN, May 9,
1996, pg 100.

2  Williams, Jim, A Designer’s Guide to
Innovative Linear Circuits, Volume II,
Cahners Publishing, 1987.

3. Graeme, Jerald, “Peak detector ad-
vances increase measurement accuracy,
bandwidth,” EDN, Sept 5, 1974, pg 73.

TABLE 1—MEASURED RESULTS FOR PEAK-DETECTOR CIRCUIT
Frequency (Hz) 25 50 100 1000 10K 100K 1M 2M 3M
% error (500 mV peak input) 2 0.6 0.2 0 1 0.8 �0.5 �3.2 �5.4
% error (1V peak input) 1.8 0.4 0 0.1 0.8 0.7 �1.3 �3 �5.2
% error (2V peak input) 2.1 0.4 0.1 0.3 1.0 1.4 �0.6 �2 �3.8
% error (4V peak input) 2 0.8 0.5 0.5 0.8 0.8 �0.5 �1.8 �3.5




