Contents

I oYL= 0 Yo T 4
2 Project INtrodUCHION.......cceeiccc et 5
2.1 PIOJECE @I .utiiiiiieiie ettt ettt ettt et ettt et e et e st e eateessteenbeesseesnseessteenseensaesnseeeeansneeennns 5
TeleMEtry UNTE (TU)...iciioieiieieie ettt ettt ettt ettt e ete e b e eseesbeesaesaeessasseessessaessesssessesssessenssensseennsnas 5

RemMOte DEVICE (RD)....ccuiiuiiiiiieii ettt sttt sttt ettt ettt e et et e e ste st esaesseenaesseensesseensessaenseesnseesnseesnseens 5

2.2 TeChNOLOZIES USEA.eeueiiuiieiieeiieie ettt ettt ettt et e et e eeeeabeesaeeesbeessaeennneaeenes 5
BIUCLOOTN. ...ttt ettt ettt ettt eh st h e eb e bt e bt e ebt e st e e beenbeeaae 6

General Packet Radio Service (GPRS).....cc.couiiiiiiiiiiiiiie ettt 6
IMICTOCOMNITOIIET. ... eeevieeiiesiieeette ettt ettt e et e vt e et eesteeeebe e taeesbeeteeesbeesseeesseassseesseessseassaansseenseassseesseessseeessnssens 6

JAVA Lottt ettt ettt et e b et et b e st e bt e e e s earaee 7

3 Hardware and Software......... .ot s 8
R 5 B30 A2 PSPPSR 8
IMICTOCOMNITOLIET. ... eevvieeiiecite et et et e ittt e et e vt e e b e esteeeabe e taeesse e beeesbeesseeesseassseasseessseassaassessseesseanseesssaeessnssnns 8
BIUCLOOTh MOQUIE.......c.eeiiiiiiiieie ettt ettt ettt et e et e e te e sebeesbeestbeebaesaseessaassseenseesssaeseessssaeaeennnes 8

GPRS MOGOIMN......ctitieett ettt ettt a ettt h et et b et e et et eneese e st e st ebeebeeaeebeebeebestesenseseneenee 8

REIMOLE AEVICE......eiuieiiiiieitieet ettt b e e b et b et e bt et e bt e bt e st e sbeembe e e seteeebteesnbeeas 9

3.2 SOTIWATIEC.....etiieeiie ettt et e e e et e e e e e e ab e e e tbeeesbeeesaeeesaeeentaeeaaaeeansaeeennnraraaens 9
PIC PrOGIamIMING........cccveitieiieiieiieieteetesteete st etesteebesteesseeseesseeseesseeseesseassesseassesseessesssessesssessenssesessssessnsees 9

Remote Device PrOgramming...........ccoccveeuiiieiiieieniieientietesteeeesteestesteeseseeessesssessesssessesssessesssessesssesseessesseenses 9

4 Basic CONNECLIVILY.......ccciiiiiriiiir i e 10
4.1 BIUCLOOtN.viiiiiiiieiie ettt ettt ettt et et e et e e sb e et e enbe e taeenbeetaeenns 10
Telemetry Unit (ACHINEZ @S @ SEIVEI)....cueeueeitieiertieieetieteetienteeseesteeeesteetesteesteeseeteeseanseeneesseeneesseensesneenaesneeeas 10

Remote Device (ACtiNg S @ CLIENT)........cverviiieriieietieieeteet ettt et ste st stesaesbeeesesseessesseessesseesesseesssseensseeens 10

4.2 GPR ettt ettt e e at e e ettt e e e e e e nabaeeaaeeas 13
GPRS CONNECHION PIODICIMNS.ieviieiieiiieeiiecie ettt ettt e et esaeesbee st e esbeeseaeenseessaessseenseesnsaessseenseeeennns 13

REIAY SEIVEL.....ecuiiiieiieiieieett ettt ettt ettt e st e e b e s st esseestesseessesseessesseessesseenseassensenssesnsseennsaeennseennnseenn 13
TRICIMELIY UNIL......ieiieieitieiecieie ettt ettt ettt e st ebeese et eesa et e esee st e ensesseensesseensesssensesssenseessenseensseeennseenn 14

REMOLE DEVICE (CIIENE).....ieuiieiieiiieeieeetie et eete ettt e et esteesteesteesebeestaeesbeessaeesseesseanseessseessaesssanssesessssssaeennn 15

4.3 Simple Messenger APPlICAtION.ceiviieiieeeitieeeieeeriee et e erteeeteesreeeeaeeesreeeennsaeeeeeannes 16

5 Wireless Telemetry System Specification...........ccccciiiiiiiiminnin s 17
5.1 CONMMNECHIVILY . .eeuutieiieeiiieiie ettt e et et e et e st e et e sate et e esaeeesbeesseeenseessbeenseasaseenseesnaeenseessseensaeens 17
5.2 FUNCHONAIIEYtiiiiieiiecieeiteeie ettt ettt et ettt e st e et e esbeessaeenbeesaeenbeennsaaeeenssaeens 17
TICIMELIY UM, ...ttt ettt et et e bt ea e bt eat e e ae e et e et e bt e at e beestenbeemteebeeambeeeneeean 17

REIMOLE DIEVICE. ...ttt ettt ettt s bt e e e bt et e e b et e e bt et e eseeembteeembeeeanbeeeneeeas 18

5.3 Data TTANSTET....ccuviiiiieiiecit ettt ettt e st e et e st e eteeeentaeeesasbeeeenbaeeenns 18
Sending data — Remote Device to Telemetry Utcouevieriiiieriiiiiieciesieeieereeeeere e eveeeineeeeveeeaee e 19

Sending data — Telemetry Unit to RemMOte DEVICE.......ccviviiiiiriiiiiiicieiecieseeeeere e e eereeeaee e 20

6 Programming the Telemetry Unit..........cccoommmicemmrr s s 21

6.1 Object StYle aPPrOACH.....cccviiiiiieiieiecteee ettt et e e e a e e aaae s 21
6.2 DAta STIUCTUTES. ...ceoutiiieiiieeiiie ettt ettt ettt e st e e s bt e e sabe e e sabe e e e e eabbaneeeesaaneee 21
BUTTET. ...ttt et ettt b e bbbt b e bbb b et e a e e 21

(U o b1 o] ¥ i <) PRI 22

6.3 RS232 COMMUNICALION.uiiiiiiiiieiieeieeit ettt ettt ettt et be e b ebeesateeeeee s 23
RECEIVING ALA. ..ottt ettt e bt e st e et et e saeeatesseenaesseenseeesseesnseeennneeens 23
SENAING AALA. ...ttt ettt e e st et e e st et e es e e bt eaee st enee et e enseesee st enee st e e eneeeenseeeanteeenn 24

6.4 Bluetooth and GPRS ..ot 25
Sending and reCeIVING Ata..........ooiiiiiiiiieiieeee ettt et e et e bttt e ettt et ettt sreeneeeanee 25
Initialising the GPRS MOA@IMN.....c.eoiiiiiiiiiee ettt ettt ettt e bt e e e e eeneee s 26
Processing reCeIVEA AAtA.........cciveiiiiieiiiieiieicie ettt et ste e s e et e s tee b e e ta et e esaesseesseeseessesseessessaensesssenseens 26
CONNECHING 10 thE SCIVET.....eeiieeiiriieiiiitieieieeie st ete et et e et eteestesteesseeseessesseessesseesseessessaessassaessesseenseesssesesseens 26
SeNdING AN SIMS......oiiiiiiiie ettt ettt b ettt et b bttt nbe e sabeeareen 26

0.5 SAMPIINEG....oeiiiiiieiieeeee ettt e e ste e e st e e e taeeetaeesstaeesssseessseeesssaeessseeessssaeaaeeeannnes 27
SAMPLE LITICT ...ttt ettt ettt et et et e s teessesae e sesseesseessesseessenseessasseesseeseenseassenseassesennsessennseeennns 27
SENAING SAMPLES. ... ettt ettt ettt ettt et e et e bt s aeestesseebeesee bt emteeseenteeseenseeneenseeneenaeenns 28

6.6 MAIN PTOZIAM......oiiiiiieiiie et ettt e et e et e e et eeesaeesnsaeesnsssaaeeeeennnnnees 28
7 Developing the Java Application..........iemi s 30
7.1 Java Application Desi@n StIUCTUIE.ccueeruiieiiieiieeiieciie ettt e et e e ieeee s 30
7.2 Connection Package..........coouviiiiiiiiiiiiiiiecie et 30
Creating a BIUEtoOth CONMECION.c.eiiiiieiiiiet ettt sttt et e et eeeeaaeeeas 31
Creating an INternet CONMMECTION.eiiiitieiiet ettt ettt ettt e ettt e s te et e sbeeeesaeenaeseeenneee s 32
SENAING AN SIMS.....oiiiiiieiiceee ettt ettt ettt et e eta e be e st e beessesseessesseessesseessesssenseessenseeensseeensaeennsaennns 32

7.3 DataTransfer Package..........cccuieiiiiiiiiieiiiciecee ettt 32
DIAtARECEIVET ...ttt ettt ettt et s bt e s e s bt e st e bt et e e bt et e ebteembeeessbeeensbeeebeeean 32
DIALASEIAETcoueeiiiieiiet ettt ettt b bbbt bbb bbbttt et et eh e a e bt bbbt bbb aeneee 33

7.4 UserInterface PaCKage.........ocuooiiiiiiiiniiiiiiiiiceceseeee et e 34
J2IME POLISR. ...ttt st b e ettt ettt b bbbt b b e e 34
(1175 4 TSRS 34
VISUAL APPEATAIICE.euveeueieeientieiieteeetesteeteseeetesee e tesse e seeseenteeseeneeeseenseeseanseeneesseensesseensesseensesseenseeennseeennseean 35
Keeping the USEr UPAALEd........c.iiiiiiiiieiieiecieeieeteet ettt ettt b st eess et e essesstseeesnseessseeenseeas 35
Handling reCeIVEd data...........ceeviiiieiiieiiiiciecteete ettt ettt e ab s re b e eae e beeraesaeesaesaeessaeessneeenreeas 36
SENAING AALA......eeeieieiteeieeeee ettt et ettt et e e st este s s eesseesaenseessaseensesseensesseensesseennseesnsneesnseeesnseeanns 36
VESUAIISET ...ttt ettt et b bbbt bbbt ettt et e st e bt e bt eb e e bt e bt s bt b be b set e et e e e naee 36

7.5 Data flow dIaZIam.......eeiiiieiiiieeiiee et etee e ste e e sete e et eeetaeeeeaeeesesnnraeaeeeeennnnnees 37
8 The Relay Server application..........ccccivccciiiiiceciererrcsrr s s samr s e e e e e e e 38
8.1 RelayServer PACKAZE.cueevuieiiieiieeie ettt ettt e st e ebe e e esbaeesesnsaeeennsaeaennns 38
SOCKETREIAY ... ettt ettt ettt et e bt et e s bt e e e ebeem e e e bt et e es e et e eseeaaeemeesaeeneesnneeeanneeenns 38
SEIVET ..ttt ettt e a et ea e bttt s bttt s bt h e e h e bt et bt e a e bt e a e e bt et e he et eae e bt et sbeenbeeenane 38
SEIVETSTALUS. ...ttt ettt eb et bttt e et s bt e st e s bt e et e s bt et e bt et e ebt et e e bt e bt eaeesbeentenabaeenateeenne 39
SEIVEIVISUAL ...ttt ettt ettt et et e te e st e te e st e beese et e ente st enseeseanseeneenseeneenseennesseentennne 39

9 Telemetry System Data FIOW..........cccciimiiniininir e e s 40

0N == g T N 41

10.1 Telemetry Uit t@STINE.eecvieriieeireiieeieestieeteeteeeteeteeeaeereessseeseesaseeeesssreeesnssaaesassseeens 41
DALA SEIUCTUIES. ... veevieeiiieitie et et e et et e eteesteeeebeesteeeseesteesseesseassseesssaasseessseassaesseassaassseassaeaessnssseessssssseennns 41

RS232 TNEETTACES. ...cuvietieeii ettt ettt et e et e it e et eesteesabe e saeeabe e bbeesbaessseessaesseessaesssaesseesseenseeeas 41
Bluetooth and GPRS.........oo.i ettt ettt et 41

Sample and DiSPLay tIMETS........cceieveriieciiirieiieiete ettt etesteete e etesteessesteesseeseesseessesseeseesseessesseessesssseesssesanns 41

10.2 Remote Device application teStING.........ceeuieiieriiienieeieeiie ettt e e e 41
10.3 Overall SYStEM tEStINE.....cccuvieiiiriieeiieeiie et erte et ette et site et e st e ebeesieesbeesseeenseenseesnseenaeens 41

11 Telemetry System User GUIde......... .o s 43
T1.1 Getting StArted........cooueeiiruiiiiiiirieee ettt ettt st 43
REQUITEIMICNLS.e.tieiietieiieeie et ette ettt ettt et esteebe e et e b e esaesbeessesseessesseessesseessesssesseessesseessasaensenseenseensseeenseens 43

IS TALLALION. ...ttt ettt et et e et e e ta e et e e baeeabe e bt e eabeestaeesbe e taeanbaetbeerbaeesaeentbaaeeeennbeeaeanns 43
BN ¥ 15 o) PO PSP 43

11.2 USING the apPliCAtION......eciiieiieiiieiieete ettt ettt e eebeeeae e e s aeessaesssseeessnsaaeeennsaeens 43
Connection Menu (Connecting to the telemetry UNIt).......ccoeeerirriererierieeieseee e 43

R 511 <) OSSPSR 44
TeleMEtry Uit OPtiONS........ccveiverieiierieetesteeteeteeteeteetesteessesstessesssesseessasseessesseessesseessesssessessseesssssessseessssees 44

REMOLE DEVICE SEINES....c.vievviivieiiietieiieierie et ete e te st et e st esbeete e beeseesseeseesseessesseessesssessesssenseessenseessenseens 45

12 Project CONCIUSION........oiiiiiiiir i e an s e e e e s nnns 49
12.1 SKillS deVEIOPMENL.eiiiiiiieiiiiieeiieeite ettt ettt et e e e et eebeesseeesseenseesnseeaeees 49
12.2 Wireless Telemetry System development............ccceveeiiieiiiiiiniiiecieeeeeeeeeee e 49

G 7 0 o =Y o Lo PN 50
13.1 Project Extension (EXtra FEatures)..........ocoueeiieiiieiiieniieiienieeitee et 50
13.2 Project CONSIIUCTION.eiitieiieeiietieeteesiteeteeteeeteesteesbeesteeesbeessaesnseeseeesnsseeesnssaeesansseeens 50

I = =] (=] = 51

1 Project Overview

This report details the work into a small, portable, battery powered remote sensing unit that can
be communicated to using both internet (over GPRS) and Bluetooth enabled devices. The
control is bidirectional allowing runtime parameters to be changed at the device (with other users
accessing the system being notified of configuration updates being transferred).

Data recorded from sensors on the system can be displayed graphically on all devices connected
to the system. An additional extension to the system is the use of SMS alerts when specified
levels are exceeded (for example the temperature of an experiment).

A typical scenario for the use of the system would be analyse the temperature fluctuations of a
chemical reaction over several hours where continual monitoring by individuals is not possible
(due for example to the climate in which the reaction is taking place).

The system in such a case would be connected to temperature sensors and placed where the
reaction is running. Alerts are generated and sent to the user’s mobile phone if the reaction
exceeds a specified temperature limit; furthermore the facility exists to check on the reactions
progress at any time by using a mobile phone or logging on to any available computer.

2 Project Introduction

This chapter describes the aims of the project undertaken and gives a brief introduction to the
technologies used.

2.1 Project aim

The aim of this project was to design and build a wireless telemetry system. The system consists
of two main elements, a telemetry unit and a remote device. The telemetry unit is a small,
portable, easy to install unit. Sensory equipment feeds a signal into this unit. A remote device
can then connect to the telemetry unit to analyse and monitor the signal.

This project concentrated on the development of the telemetry unit and a software application for
remote devices rather than data acquisition from sensory equipment.

Figure 1 shows a block diagram of the telemetry system. A solid arrow represents wired data
transfer, and a dashed arrow represent wireless data transfer.

I Wireless Telemetry System I

IHENEI| I I
Sensory Equipment Telemetry Unit Remote Device
IEENEIl

F/gure 1: W/re/ess te/emetry system b/ock d/agram

In this report telemetry unit may be referred to as the TU and remote device as RD.

Telemetry unit (TU)

The telemetry is a portable, battery powered unit. Sensory equipment is connected directly to the
unit, however all data communication with remote devices is wireless. As a result only the
telemetry unit itself is required to be in the monitored environment. The telemetry unit is small
and easily portable so sensory equipment can to be placed wherever it is required, without
having to worry about the requirements of large complex data processing devices such as
desktop computers. .

Remote Device (RD)

Remote devices can communicate with the telemetry unit via a purposely designed software
application. This application can run on many everyday electronic devices such as desktop
computers, mobile phones and PDAs. Therefore communication is possible without a
specifically designed device, resulting in reduced costs, greater flexibility and convenience for
the end user.

2.2 Technologies used

Through research it was decided that a combination of Bluetooth, GPRS (General Packet Radio
Service), microcontroller and Java technologies were to be used for developing the wireless
telemetry system. This section introduces these technologies and gives reasoning as to why they
were chosen.

Bluetooth

Bluetooth is a standard for short range, low power consumption wireless communication. It can
achieve high data rates (up to 3 Mbps [1]) and uses relatively inexpensive hardware. Unlike infra
red it does not required direct line of sight between transmitter and receiver. Many mobile
devices such as laptops and mobile phones now come with Bluetooth connectivity as standard.
The range of Bluetooth communication is between one and 100 meters depending on the class of

device used. The majority of devices use class two Bluetooth limiting communication range to
10m.

A viable alternative to Bluetooth is Zigbee. Zigbee offers greater range at significantly lower
power consumption compared to Bluetooth. However Zigbee has a lower data rate (maximum
250Kps [1]) and is still in its infancy. As a result very few devices cater for Zigbee, unlike
Bluetooth which is very widespread.

General Packet Radio Service (GPRS)

Bluetooth has both low power consumption and high transfer rates, however its limitation is
range. To increase the range of the telemetry system an alternative technology was required.

An ideal solution was to enable devices to communicate with the telemetry unit over the internet.
Internet access is widely available and many common devices now have Internet connectivity.
To give the telemetry unit internet access it could have been connected to an internet enabled
network. Such networks are now commonplace in nearly all institutions, workplaces and homes.
Wi-Fi chips can connect to these networks wirelessly, however they consume considerable
power, require a wireless network to be present and complex configuration.

An alternative way to connect to the Internet is over GPRS. GPRS is a packet orientated mobile
data service which connects to the Internet via mobile phone networks. It is much slower than
both Wi-Fi and Bluetooth (data rates up to 171Kbps [2]) and data transfer is not free. However
an internet connection can be made via GPRS wherever mobile signal is available, so no
network infrastructure is required.

GPRS connectivity was incorporated in conjunction with Bluetooth connectivity. Bluetooth is
used for short range communication as is is faster and data transfer is free. When long distance
communication is required GPRS is available.

Microcontroller

The telemetry unit is controlled by a microcontroller. There are several key features which make
microcontrollers ideal for this application

e Widely availability

e Low cost

e Low power consumption
e Re-programmability

e FEase of development

Micro controllers often have integrated features such as an ADC to sample the signal and a
UART for serial communication. The microcontroller is connected to external Bluetooth and
GPRS modules through which it communicates with remote devices.

Java

The software application run by remote devices was developed in Java. Java was chosen for its
platform independence and the number of devices which currently support it. As it is platform
independent a single application was developed which runs on any Java enabled device. Java is
available for free on desktop computers and laptops, and is implemented on many modern
mobile phones and PDAs

Other platform independent languages such as the Microsoft .NET platform are available,
however Java is the most widespread.

3 Hardware and Software

Once these technologies had been chosen the associated hardware and software was required.
This included a microcontroller, Bluetooth and GPRS modules and software packages.

3.1 Hardware

This section gives information about the hardware used during the development and construction
of the wireless telemetry system.

Microcontroller

The microcontroller used was the Microchip PIC16F877 along with the PIC Millennium
Development Board and PicStart Plus programmer. The PIC16F877 is a widely available 8-bit
micro controller with an ADC for sampling the incoming signal and a Universal Asynchronous
Receiver Transmitter (USART) for serial communication with the external Bluetooth module
and GPRS modem. The development board provided a keypad, LCD, LEDs and a MAX232 chip
to convert voltage levels for RS232 communication.

For more information on all these products please visit Microchips website [3].

Bluetooth Module

To enable the PIC to communicate via Bluetooth a Parani ESD200 Bluetooth module was used.
This module was chosen because of its low power consumption, small form factor, simplicity of
use and personal recommendation. The PIC communicates with this module through TTL level
RS232 communication. The Parani ESD200 is configured through a PC wizard or by the PIC
itself using AT commands. Once a Bluetooth connection has been established this module acts as
a virtual serial port, sending and receiving raw bytes to and from the PIC and connected
Bluetooth device.

For more information on the Parani ESD200 please visit [4].

GPRS Modem

The Telit TER-GX101S modem was used to enable GPRS internet connectivity for the PIC. It is
a GPRS/GSM modem which can also make phone calls and send SMS messages. Like the
Parani ESD the Telit TER-GX101S is configured through a PC wizard or by using AT
commands and acts as a virtual serial port once a GPRS connection has been established.

The Telit TER-GX101S modem is not ideal for this purpose. It is a relatively large unit, requires
an external aerial and a mains power supply. Therefore, although this modem was suitable for
development, a GPRS module would be used for production of the telemetry unit rather than a
GPRS modem. An ideal GPRS module would be one of the small, battery powered AarLogic
C01/3 / C05/3 modules.

For more information on the AarLogic C01/3 and C05/3 GPRS modules please visit [5].

The Telit TER-GX101S modem is no longer in production, however for more information on its
successor, the Telit TER-GX104 please visit [6].

Remote device

During development a single remote device was used. This was a Sony Ericsson K800i mobile
phone. This is a standard mobile phone providing many common features including all of those
required for this project — Bluetooth and GPRS Internet connectivity and Java ME support.

For more information on the Sony Ericsson K800i please visit the Sony Ericsson website [7].
3.2 Software

This section gives information on the programming languages and software packages used to
develop the telemetry system.

PIC Programming

The PIC was programmed in C. The C programming language was chosen over assembly
language due to its ease of development and programming clarity. The CCS C compiler was
used along with Microchip MPLAB IDE. All source code was written using Notepad++, a free
source code editor, for its features including syntax highlighting and tabbed document browsing.

For more information on and downloads for MPLAB, CCS and Notepad—++ please visit [3], [8]
and [9] respectively.

Remote Device Programming

A remote device can communicate with telemetry unit through a Java application. The remote
device used for this project was a mobile phone (Sony K800i). Therefore the Java ME CLDC 1.1
MIDP 2.0 platform was used. This platform is available on most modern mobile phones and
includes the wireless API required. Earlier Java ME platforms may also run the application,
however this is not guaranteed. Java SE platforms (the Java platform run on desktop computers)
require a separate GUI to be developed before the application will run. For more information on
this please see chapter 7.

To help develop the application Netbeans IDE was used along with the Java Wireless Tool Kit
(WTK). This enables applications to be developed, simulated and debugged on a PC without
having to run the application on a mobile device. The Sony Ericsson SDK was also used on
occasions.

To visually enhance the Java application J2ME Polish was used. This required the writing of
Cascading Style Sheets (CSS) which are commonly used in website design. More information on
J2ME Polish can be found in chapter 7.

For more information on Netbeans and J2ME Polish please visit [10] and [11].

10

4 Basic Connectivity

Once the hardware and software had been chosen, development began on the wireless telemetry
system. This section covers the basics of creating a connection with, and sending data between,
the telemetry unit and a remote device.

Once basic connectivity had been established a simple messenger program was developed which
is documented at the end of this chapter (section 4.3).

4.1 Bluetooth

A Bluetooth connection consists of both a client and a server. In the case of this project the
telemetry unit acts as the server and a remote device as a client.

Telemetry Unit (acting as a server)

The Parani-ESD Bluetooth module used for the telemetry unit can be in one of 4 modes:

e Mode0 — waiting for AT commands. Bluetooth is not active. Mode used for configuring
the Parani-ESD.

e Model — tries to connect to the last connected Bluetooth device.
e Mode2 — waiting for a connection form the last connected Bluetooth device.
e Mode3 — waiting for a connection from any Bluetooth device.

To act as a server the Parani-ESD is operated in mode3. In this mode it is discoverable by any
device, unlike mode2 which only allows a single device to connect.

Once a client is connected to the Parani-ESD it informs the PIC by sending the message
“CONNECT". It then becomes a virtual serial connection, passing raw data to and from the PIC
and connected device over the Bluetooth connection. This continues until the remote device
disconnects, upon which the PIC is informed by a “DISCONNECT” message. The module
automatically disconnects if the device goes out of range.

Messages to and from the PIC and Parani ESD are sent through the same RS232 interface as
data from a remote device. Therefore these messages must be processed correctly, otherwise data
or messages may be misinterpreted. The Parani ESD begins and ends each message with two
command characters to allow messages to be distinguish from data.

Remote Device (acting as a client)
This sub-section describes how to make a Bluetooth connection in Java ME. All classes and
methods described here are provided by the Java ME implementation.

The Java client side is considerably more complicated than telemetry unit server. Setting up the
Bluetooth connection is achieved in three stages. These are:

e Device discovery
e Service search
e Service connection

A client device sends out a request to discover all available Bluetooth devices. Once a device has
been discovered it can then be searched to determine the services it supports. There are a large
range of Bluetooth services available but the service used by the Parani-ESD is the Bluetooth
Serial Port Service. This service which allows the transfer of serial data between two devices.

11

Each service on any Bluetooth device has a universally unique identifier (UUID). This UUID
can be used to construct a URL from which a connection can be created, in a similar fashion to
creating a connection over the internet.Figure 2 Shows the URL of the serial port service of the
Bluetooth dongle used during development.

btspp://00a09611fe32

Figure 2: Bluetooth URL

The protocol is btspp and 00a09611fe32 is the UUID. Once the connection has been made data
can be sent freely between the two devices.

The Java package used to access the Bluetooth API is javax.bluetooth. Figure 3 illustrates the
classes used to establish a Bluetooth connection.

Javax.microedition.midlet javax.bluetooth::
::MIDlet DiscoveryListener
o
javax.bluetooth:: 1 | javax.microedition.io::
DiscoveryAgent | % StreamConnection
1
javax.bluetooth:: My Bluetooth

LocalDevice 1 1 MIDlet

1 = one instance

javax.bluetooth:: * 1 1 * = many instances
RemoteDevice

javax bluetooth:: -
ServiceRecord

Figure 3: Classes used to establish a Bluetooth connection. [12]

LocalDevice

The Localbevice class is a singleton (only ever one instance of the class) of which a reference
is obtained by calling LocalDevice.getLocalDevice (). The LocalDevice instance provides
methods to return the devices current Bluetooth settings (such as getFriendlyName ()) and a
method to return the DiscoveryAgent instance. It is the Discoveryagent which provides
methods to search for devices and services.

DiscoveryAgent

The pDiscoveryagent is also a singleton, of which a reference is returned by calling the
LocalDevice.getDiscoveryAgent () method. To begin device discovery (search for Bluetooth
devices) a call must be made to the DiscoveryAgent method startInquiry(..).

startInquiry (int accessCode, Discoverylistener listener)

The accessCode argument should be piscoveryaAgent.GIAC which is a general inquiry access
code which inquires about all devices. Other access codes can be used to discover only specific
types of device. Listener is the instance of a class that implements the DiscoveryListener
interface to which callbacks are made. Once a device has been discovered its services can be
searched using the DiscoveryAgent searchServices (..) method

12

searchServices (int[] attrSet, UUID[] uuidSet, RemoteDevice btDev,
DiscoveryListener listener)

The uuidset argument is an array of UUIDs for the services of interest, in this case the UUID
for the serial port profile. BtDev is the device to search and 1istener is the same as before. Both
of these methods require considerable computation time, so rather than blocking they return
instantly and communicate through call back routines defined in the DiscoveryListener
interface implemented by listener.

DiscoveryListener

DiscoveryListener is an interface which defines the four call back routines shown in Figure 4.

deviceDiscovered (RemoteDevice btDevice, DeviceClass cod)
inquiryCompleted (int discType)
servicesDiscovered (int transID, ServiceRecord[] servRecord)

serviceSearchCompleted (int transID, int respCode)

Figure 4: DiscoveryListener interface

These routines must be implemented by any class which implements the DiscoveryListener
interface. They are called each time a device/service is discovered and when the device/service
search has completed.

RemoteDevice

For every device found a callback to deviceDiscovered(..) is made, providing a
RemoteDevice instance representing the device found. This class provides methods to query the
device for information such as its address, friendly name, authorisation and authentication. To
discover which services the device offers a call must be made to the piscoveryaAgent method
searchServices () with the RemoteDevice instance as one of the arguments.

ServiceRecord

Once searchservices () has been called the assigned listener will receiver a sequence of calls
to servicesDiscovered () ﬁﬂaned,by'afﬁngk:caH t0 serviceSearchCompleted (). Calls to
servicesDiscovered() provide ServiceRecord instances for each service found. The
ServiceRecord class provides the method getConnectionURL () which returns the URL of the
service which can then be connected to using the javax.microedition.io.Connector class.
The lines of code in Figure 5 connect to the URL specified in the string ur1 and open both input
and output streams which can be read from and written to accordingly.

StreamConnection conn = (StreamConnection) Connector.open (url);
InputStream is = conn.openInputStream() ;
OutputStream os = conn.openOutputStream() ;

Figure 5: Code to connect to a URL and open input and output streams

For more information on the Java Bluetooth APIs please visit [13].

13

4.2 GPRS

An Internet connection requires a server to listen for incoming connections and a client to
connect to the server. Ideally the telemetry unit would act as a server waiting for a connection
from a remote device. This required the telemetry unit to a open a server side socket on a
designated port and any device could then connect to that socket. However several unforeseen
problems prevented this.

GPRS connection problems

Whenever the telemetry unit enables GPRS it is assigned a different IP address. This meant that
the remote device did not know what IP address to connect to. The same problem occurs when
the mobile phone enables GPRS. This meant that neither the telemetry unit or remote device
knew the others IP address, making communication impossible.

Originally it was thought that if the remote device or telemetry unit could open up a server side
socket and then send its IP address in a SMS message then the other could connect to this
address. Unfortunately there was another problem with this solution — each device could only
retrieve its internal IP address, one that is not globally addressable (cannot be connected to).

It was evident that direct data transfer over GPRS was not going to be simple, if at all possible.
The problem was equivalent to a hypothetical situation of two friends wanting to call each other,
but neither knowing the others number, or even in fact their own.

What's your I don't know,
number? what's yours..?
bﬂ | 0
)

Figure 6: How do you ring a friend when you don't
know their number?
They can send SMS messages to each other, however this is both very slow and costly, making it
an unsuitable alternative.

The final solution was to introduce a third party — a relay server. Using the situation from before,
this is a third friend whom both friends can ring and who will then pass on messages between
them. This friend always has the same number, so it does not matter that the other friends do not
know their own numbers.

Relay Server

The relay server opens a socket and waits until both the telemetry unit and a remote device have
connected to it before directly relaying data between them. Neither the telemetry unit or remote
device are aware of its presence. It can also be used to monitor Internet access, and keep records
of any data transferred. The relay server must be hosted on the Internet. This can be done by
purchasing a domain and leasing space on a web server, however this is costly. A free alternative
is to use the services of DynDNS.

14

DynDNS offer free domains, and more importantly a free domain name service which maps a
domain to a computer. This means that the server can be run on any computer which has internet
access, removing the need to lease a dedicated web server.

Most internet users are assigned a dynamic IP address from their ISP. This IP address may
change which would cause the domain name to no longer map to the required computer.
However DynDNS provide a free program which runs on any computer (and quite a few routers)
to ensure that the domain name is always mapped to the correct computer, regardless of its
changing IP address. For more information on DynDNS please visit [14].

Telemetry Unit

The Telit GPRS/GSM modem accepts AT commands which are terminated by a carriage return
character. The modem can be set to respond with either verbose responses such as 'OK' or
numeric responses. It was found that numeric responses were easier to interpret than verbose
responses. Figure 7 shows the numeric response codes and their interpretation.

Response Code Interpretation

0 Command Successful
1 Connected

2 N/A (ring)

3 Disconnected

4 Command Error

5 N/A (no dial tone)

6 N/A (busy)

7 N/A (no answer)

Figure 7: Telit modem response codes

The Telit modem takes considerable time to processes even simple commands so a delay of
500ms was used in between all commands sent.

Making a GPRS connection

To connect to the relay server the Telit modem must connect to specified port on the server. Two
commands are required to achieve this, AT#skTSET and AT#skTop. The first sets the properties of
the socket.

AT#SKTSET=0,21000, "WWW.DANNY . GOTDNS . COM"

This socket is set to be a TCP socket, which will connect to port 21000 on
www.danny.gotdns.com. The aT#skTop command then opens the socket and starts the
connection procedure.

AT#SKTOP

The default packet size, socket time-out and other socket properties can be set using commands
which are specified in the Telit user manual available at [6].

http://WWW.DANNY.GOTDNS.COM/

15

Sending an SMS

To send an SMS using the Telit modem SMS messaging must be enabled using the command

AT+CNMI=2, 1

SMS must then be set to '"Text Mode'.

AT+CMGF=1

The pseudo code to then send the SMS “Hello” to 07121212121 is shown in Figure 8.

Send : AT+CMGS= 07121212121
Wait to receive the '>' character
Send : Hello

Send : CRTL+Z (decimal 26) (end of message character)

Wait for message sent confirmation

Figure 8: Pseudo code to send an SMS using the Telit GPRS modem

Remote Device (Client)

The remote device used was a mobile phone which can also send SMS messages and connects to
the relay server over GPRS.

Making a GPRS connection

Connecting to the relay server is very similar to connecting to a Bluetooth device, however the
URL is previously known so no device or service discovery is required. Once a connection has
been establish an InputStream and an OutputStream can be opened in exactly the same way as
they are for a Bluetooth connection. The Java code in Figure 9 shows how to open a socket on

port 21000 of www.danny.gotdns.com.

String url = "socket://www.danny.gotdns.com:21000";
StreamConnection conn = (StreamConnection) Connector.open (url);
InputStream is = conn.openlInputStream() ;

OutputStream os = conn.openOutputStream() ;

Figure 9: How to open a socket in Java

Sending an SMS

To send an SMS a URL is required. This URL is “sms://” followed by the recipients phone
number. Figure 10 shows how to send a SMS in Java ME.

String url = "sms://07121212121"

String message = "Hello";

// opens connection

http://www.danny.gotdns.com/

16

MessageConnection conn = (MessageConnection) Connector.open (url);

// prepares text message
TextMessage sms = (TextMessage)
conn.newMessage (MessageConnection.TEXT MESSAGE) ;

// write the message
sms.setPayloadText (message) ;

// send the sms
conn.send(sms) ;

Figure 10: How to send an SMS in Java ME

4.3 Simple Messenger Application

A simple messenger application was developed to test the transfer of data between the telemetry
unit and a remote device. Once a connection is established it appears identical to both the
telemetry unit and remote device whether it is a Bluetooth or GPRS connection. Therefore the
messenger application can be run over either connection, however it was developed and tested
for a Bluetooth connection to omit the added complexity of developing a relay server at this
stage.

One-way messenger

The original messenger application allowed the remote device to search for Bluetooth devices
and connect to them. Once connected to the telemetry unit messages could be written and sent
over the Bluetooth connection. They were then displayed on the development board LCD.

Two-way messenger

The application was then extended by turning the development board keypad into a fully
functioning keypad capable of typing standard alpha-numeric characters (similar to a mobile
phone keypad). Messages were then typed on the keypad and sent from the telemetry unit to the
remote device. This added extra complexity as both the telemetry unit and remote device were
now sending and receiving messages simultaneously. This required the PIC to use interrupts to
receive data and the remote device application to have a separate thread for receiving data.

Sample sending

Once the two way messenger was fully functional the application was extended again. This time
the telemetry unit sent messages at the same time as sending regular readings from the PICs
ADC. The ADC and a timer interrupt were used to send readings at a specified time interval. The
remote device application was also to display both messages and the samples being sent. The
messages were displayed in a main window and samples in the windows title bar. When
receiving data, messages and samples were differentiated between by using a different header
byte for each.

Overall Outcome

Developing this application proved the wireless telemetry system was achievable. Connection
establishment, data transfer and signal sampling were all implemented successfully. Through
achieving this key programming skills and routines were developed. These included multi
threading, use of interrupts, automated data processing/buffering, routines to operate the
development board keypad and LCD and simple Java ME graphical user interface construction.

17

s Wireless Telemetry System Specification

Once basic connectivity and data transfer had been achieved a full specification for the wireless
telemetry system was produced. This section documents the specification.

5.1 Connectivity

The telemetry unit supports both Bluetooth and Internet connectivity. This is limited to a single
Bluetooth and a single Internet connection, however both connections are supported
simultaneously. This allows two remote devices to communicate with the telemetry unit at the
same time.

Bluetooth connections connect directly to the telemetry unit whereas Internet connections are via
a relay server. The telemetry unit connects to the server via GPRS. Due to the costs involved
with GPRS the telemetry unit is not constantly connected to the server. Therefore to initiate an
internet connection an SMS message is sent to the telemetry unit requesting for it to connect to
the relay server. This process is displayed graphically in Figure 11.

Step 1 — Send TU receives connection
SMS to TU - - SMS I oy ~ request SMS
- ~,
-]
Remote Device Telemetry Unit
’, '
Ny \
& ="
’ A}
Step 2 — Connect ’ * ‘ ' TU connects
to relay sener Relay server to senver

Figure 11: Process of connecting to the telemetry unit over the Internet

5.2 Functionality

This section describes the functionally of both the telemetry unit and the remote device
application.

Telemetry Unit

The telemetry unit is able to:
e Sample an incoming signal between 0-5V with § bit resolution
e Support sample rates from micro seconds to hours
e Send live samples to all connected devices
e Send samples at a different rate to the sample rate

e Send a warning SMS to a remote device if this signal reaches a pre-defined level (critical
level) while no device is connected

18

Remote Device

The remote device application is able to:

Display the value of incoming samples

Graphically display incoming samples

Change the telemetry unit sample rate

Change the rate at which the telemetry unit sends live samples (display rate)
Change the critical level

Warn the user if the critical level has been reached

Change to phone number of the device to which the telemetry unit sends critical level
warnings

Change the server address to which it connects
Change the server address to which the telemetry unit connects

Change the phone number of the telemetry unit (to which an internet connection request
SMS is sent)

5.3 Data Transfer

Data is be transferred in packets. These packets are the same regardless of the connection type.
Each packet contains one of the following:

Request for the current value of a setting (RD -> TU)
Request to change a setting (RD -> TU)

The current value of a setting (TU -> RD)

Value of the latest sample (TU -> RD)

When a remote device connects to the telemetry unit it does not know the value of the telemetry
unit's settings (for example sample rate). Therefore the remote device sends individual requests
for the value of each setting. The telemetry unit then sends back the value of each setting. The
remote device can change any setting by sending a request to change the setting along with the
new value. Once this change has been successful the telemetry unit sends the new value of the
setting back to the remote device. This is shown graphically in Figure 12.

TU Settings RD Settings

Sample Sample

ate
ate=2 _ Reauest SETPETTT rate=?
Sample rate =2
Sample

M rate =2
Sample
rate = 5
Sa/h .
~
Qe
=5
Sample
rate =5

Figure 12: Requesting and changing the telemetry unit's settings

19

The remote device assumes that the setting has not been changed unless it receives the updated
setting. This is to prevent a user from thinking that they have changed a setting when the change
failed. If more than one device is connected to the telemetry unit then both devices are sent the
updated setting automatically.

Sending data — Remote Device to Telemetry Unit

Data sent from a remote device to the telemetry unit is in a packet structure as shown in Figure
13.

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE

DATA HEADER (0xFF) |CMD HEADER |CMD_ DATA

Figure 13: Remote device to telemetry unit data packet structure

DATA HEADER is a single byte of decimal value 255 (hex FF) which informs the telemetry
unit that this is the start of a valid data packet. This header enables the telemetry unit to separate
data sent from a connected device to messages sent by the Bluetooth or GPRS modules
themselves (such as a connection or disconnection notification). It also prevents erroneous data
from being interpreted as commands, as all commands must be preceded by the
DATA HEADER. The next byte is the CMD HEADER. This tells the telemetry unit what
action is required and what (if any) data follows. The command headers used are shown in
Figure 14.

CMD_HEADER Value Description

HEADER SAMPLERATE 0x01 Request for the current sample rate. No
CMD_DATA supplied.

HEADER DISPLAYRATE 0x02 Request for the current display rate. No
CMD_DATA supplied.

HEADER PHONENUMBER 0x03 Request for the phone number stored to which
alert messages are sent. No CMD DATA
supplied.

HEADER CRITICALLEVEL |0x04 Request for the current critical level value. No

CMD_DATA supplied.

HEADER SERVERURL 0x05 Request for the URL of the server to which the
PIC connects when a GPRS connection request
is received. No CMD_ DATA supplied.

HEADER SET SAMPLERATE |0xF1 Request to change the sample rate.
CMD_DATA = sample rate.
HEADER SET DISPLAYRATE |0xF2 Request to change the display rate.
CMD_DATA = display rate.
HEADER SET PHONENUMB |0xF3 Request to change the phone number stored.
ER CMD_DATA = phone number.
HEADER SET CRITICALLEV |0xF4 Request to change the critical level.

EL CMD_DATA = critical level

20

HEADER SET SERVERURL |0xF5 Request to change the server URL stored.

CMD DATA = server URL.

Figure 14: Data headers

Sending data — Telemetry Unit to Remote Device

Data sent from the telemetry unit to the remote device is wrapped in same packet structure as
data sent from the remote device to the telemetry unit.

For SET commands an attempt is made to change the requested setting with the data provided.
The resulting value of that setting, whether the change has been successful or not, is then sent
back to the remote device. The command headers used are shown in Figure 15.

CMD_HEADER Value Description

HEADER SAMPLE 0x0A The following CMD_ DATA 1is the latest
sample

HEADER SAMPLERATE 0x01 The following CMD DATA 1is the current
sample rate.

HEADER DISPLAYRATE 0x02 The following CMD_DATA is the current
display rate.

HEADER PHONENUMBER 0x03 The following CMD DATA is the phone
number stored to which any alert message will
be sent.

HEADER CRITICALLEVEL |0x04 The following CMD_ DATA is the current

critical level value.

HEADER SERVERURL 0x05 The following CMD_DATA is the URL of the
server to which the PIC will connect to when a
GPRS connection request has been received.

Figure 15: Data headers

21

6 Programming the Telemetry Unit

This section goes into detail about the software developed to run on the PIC microcontroller.
This software implements the functionality described in the previous chapter.

6.1 Object style approach

The C programming language is a procedural language. However all code has been developed
using an object orientated approach. This allows for easily readable and changeable code. It
helped to reduce potential errors and allowed for each 'class' to be tested separately.

Classes were constructed using structures, and their associated methods are functions which take
a pointer to the instance of the class structure as an argument. Figure 16 shows and example of
the method1 (..) method of the myclass class.

myclass methodl (struct myclass * instance, int agrl, int agr2);

Figure 16: Example of a class method
6.2 Data structures

For convenience, coding simplicity and to avoid memory leaks two simple data structures were
developed. These are buffer and circular buffer.

Buffer

Buffer 1S a simple struct containing a pointer to a standard C array and two integers which
store the size of the buffer (number of bytes allocated in the data array) and the index of the next
empty byte in the array.

struct buffer {
BYTE * data;
int size;

int next in;

Figure 17: Buffer structure

These variables should not be accessed directly. Instead a pointer a buffer instance should be
passed to the specifically defined functions found in D BUFFER.C. Functionality is provided to
dynamically allocate and initialise a buffer, read and write bytes to a buffer, and query the
current status and size of a butfer. The buffer API is shown in Figure 18.

struct buffer * buffer init (struct buffer * buff, unsigned int size);
struct buffer* buffer from string(struct buffer * buff, BYTE *string);

BYTE buffer read byte(struct buffer * buff, unsigned int byte num);

intl buffer write byte(struct buffer *buff, BYTE data);

22

int buffer write bytes(struct buffer * buff, BYTE * src, int size);
int buffer write string(struct buffer * buff, BYTE * string);

void buffer clean(struct buffer * buff);

void buffer reset(struct buffer * buff) ;

intl buffer full(struct buffer * buff);

int buffer space(struct buffer * buff);

void buffer display data(struct buffer * buff);

void buffer display idata(struct buffer * buff);

Figure 18: Buffer API

More detailed information and the implementation of each of these functions can be found in
D BUFFER.C.

Circular buffer

Circular buffer iIs an implementation of a circular buffer with FIFO access. The structure is
shown in Figure 19.

struct circular buffer {
BYTE * data;
int size;
int current size;
BYTE next in;
BYTE next out;
intl full;

intl empty;

Figure 19: Circular_buffer structure

As with the buffer structure these variables should not be accessed directly. Similar functions
are provided for circular buffer as for buffer. The API is shown in Figure 20.

struct circular buffer * circular buffer init(struct circular buffer *
buff, unsigned int size);

intl circular buffer write byte(struct circular buffer
*mycircular buffer,BYTE data);

BYTE circular buffer read byte(struct circular buffer *
mycircular buffer);

int circular buffer read string(struct circular buffer *
mycircular buffer, BYTE * string);

23

int circular buffer read data(struct circular buffer *
mycircular buffer, BYTE * dest, int size);

int circular buffer write data(struct circular buffer *
mycircular buffer, BYTE * src, int size);

intl circular buffer full (struct circular buffer * mycircular buffer);

intl circular buffer empty(struct circular buffer *
mycircular buffer);

int circular buffer space(struct circular buffer * mycircular buffer);

void circular buffer clean(struct circular buffer *
my circular buffer);

void circular buffer display data(struct circular buffer *
mycircular buffer);

void circular buffer display idata(struct circular buffer *
mycircular buffer);

Figure 20: Circular_buffer API

More detailed information and the implementation of each of these functions can be found in
D CIRCULAR BUFFER.C.

By using these data structures and associated methods data handling and storage responsibilities
are separated from the main program. This simplifies the main program and eases code
alteration. These structures were tested separately to ensure their validity. This eased later
debugging.

Both buffer and circular buffer have been implemented to ensure that memory leaks will
not occur. An attempt to write too much data to either of these buffers results in the data being
discarded and notification via function return value.

6.3 RS232 Communication

The PIC communicates with the Bluetooth module and GPRS modem via RS232. To enable
simultaneous communication two RS232 communication interfaces were developed,
rs232 comMl and Rs232 comm2. These can be found in the corresponding
D RS232 COMMI.C and D RS232 COMM2.C files. Both interfaces have identical API,
however rs232_comm1 utilises the PICs USART (a hardware device designed to convert parallel
data for serial transmission and vice versa) whereas Rs232_comM2 handles serial data by using
software interrupts. This is less reliable and more processor intensive than using the USART,
however the PIC16F877 only has one USART. Unfortunately the only PIC models which have
more than one USART have more than 40 pins and were not compatible with the development
board or programmer used.

Receiving data

Both interfaces automatically receive incoming data via interrupt routines and store it in a
circular buffer, of size defined by rs232 comM BUFFER s1zE. Buffered data can then be
retrieved by using the corresponding rs232 comm get byte () function which returns the next
byte and removes it from the buffer. Rs232 comm get byte () returns immediately and should
not be called without first checking that new data is available (eg wusing the
rs232 comm data available() function). If rs232 comm get byte () is called when there is

24

no data available the returned byte is invalid. The buffer should not be accessed directly and if
the it becomes full then any data received will be discarded until space becomes available.

In many applications the PIC expects more data to arrive over RS232, for example if three digits
of a phone number had arrived then eight more digits are expected. However the PIC processes
data faster than it arrives over RS232. This results in the PIC having to wait for the remaining
data. Rs232 comm wait for data () is a function which will wait indefinitely and only returns
once data is available. However use of this function is not advised as data may have been lost or
corrupt and never arrive, resulting in the program stalling indefinitely.

To solve this pﬂﬁﬂenlrsZ32_comm_wait_ms_for_data(unsigned long ms)‘wasdevdoped
This function returns TRUE immediately if there is already data available in the buffer. If data is
not available then it waits a maximum of ms milliseconds for data to arrive. If no data arrives by
the end of this period then it returns FALSE. This prevents the program from waiting indefinitely
for data. This function returns TRUE as soon as data is available and does not wait the time
specified before returning.

To ensure that the receive buffers do not fill up rs232 comm data available() is polled
regularly and the data processed as soon as possible.

Functions for both RS232 interfaces were developed to receive a specified number of bytes and
return them in a buffer structure. A standard time-out is used to receive the bytes. If the time-
out expires then the function returns the number of bytes received.

Sending data

Functions for both interfaces were developed to send a single byte or an entire buffer over
RS232.

To help debug and visualise data being sent over RS232, both interfaces define pins which are
set high/low (ideal for connecting to LEDs) when data is available and when the receive buffers
are full. These pins can be changed by altering the #define statements at the top of the
corresponding .C files. The full API for each communication interface is shown in Figure 21.

intl rs232 comml init();
BYTE rs232 comml get byte();

unsigned int rs232 comml get bytes (struct buffer * buff, unsigned int
bytes) ;

intl rs232 comml send byte (BYTE data) ;

intl rs232 comml send buffer (struct buffer * buff);
intl rs232 comml data available();

void rs232 comml wait for data();

intl rs232 comml wait ms for data(unsigned long ms) ;
void rs232 comml clear buffer();

void rs232 comml display data();

void rs232 comml display idataf();

Figure 21: Rs232_comml1 interface API

25

More detailed information and the implementation of these functions can be found in
D RS232 COMMI1.C/D_RS232 COMM2.C.

Figure 22 shows the flow of data in and out of the PIC via RS232 using these interfaces.

PIC Micro controller

Main code -

f |

[1

rs232 comml get byte() | rs232_comm2_get byte ()
raziz_conml buffer ra2ia_conmz buffer
Y Y
rs232_comml send byte(..) INT_RD}H. INT_EXT r8i32_ commz_send bytel..)

Figure 22: Diagram showing the flow of data in and out of the PIC using the Rs232 interfaces.

6.4 Bluetooth and GPRS

D BLUETOOTH.C and D_GPRS.C were developed over the top of the rs232 comm interfaces.
This section goes into more detail about D GPRS.C however the same principles apply to the
functions in D BLUETOOTH.C

Sending and receiving data

The functions shown in Figure 23 were developed to send to and receive data from the GPRS
module.

BYTE gprs_recv_byte ()

int gprs recv bytes (struct buffer * buff, int num bytes)
intl gprs_send byte (BYTE data)

intl gprs_send buffer (struct buffer * buff)

intl gprs wait ms for data(unsigned long ms)

Figure 23: GPRS functions

These functions call the relevant rs232 comm?2 functions. For example gprs send byte(..)
calls rs232 comm2 send byte(..). This makes the code easier to read and allows the
underlying functions could be changed easily. For example the GPRS module could be moved to
rs232 comml by simply changing these functions to the rs232 comml equivalents.

26

Initialising the GPRS modem

To ensure that the GPRS modem is operational gprs init () was developed. This function
attempts to set the modem correctly and returns TRUE if this was successful. This is called before
using any of the other gprs functions.

Processing received data

Once data has been received it is analysed to determine if it is data that has been sent to the
telemetry unit from a remote device or if it is a message from the GPRS modem itself. To do this
gprs_process () was developed. This function returns a GPRS RESPONSE enum Which indicates
what has been received. The GPRS RESPONSE enum is defined in D GPRS.C and shown in
Figure 24.

enum GPRS RESPONSE {

GPRS_RESPONSE_OK,
GPRS_RESPONSE_ERROR,
GPRS_CONNECT,
GPRS_DISCONNECT,
GPRS_GOT_SMS_PROMPT,
GPRS_SMS_ RECEIVED,
GPRS_SMS_SENT OK,
GPRS_DATA HEADER,
GPRS_UNKNOWN_HEADER

Figure 24: GPRS_RESPONSE enum

By developing the gprs process () function the GPRS modem can be used without having to
worry about deciphering messages it may send and separating them from data sent by a remote
device. This function simply returns GPRs_DaTA HEADER if the data is from a remote device or a
different Gprs ReEsPONSE depending on the message sent by the modem. This hides the
operation of the modem from the main code. The modem can therefore be changed with minimal
disruption, as only the implementation of this function will need altering.

Connecting to the server

The gprs_connect to server () function connects to the relay server. The function itself does
not return a value and does not state whether the connection was successful or not. The modem
often takes considerable time to return a connection established or failed message and so it was
decided that this function should not wait this amount of time before returning. The status of the
connection is determined by calling gprs process () once data is available. If the modem has
successfully connected to the server then GPRs connecT is returned, and if not then
GPRS_DISCONNECT Or GPRS_RESPONSE_ERROR is returned.

Sending an SMS

To send an SMS gprs send sms(struct buffer* number, unsigned int level) was
developed. This function takes two arguments, a buffer containing the phone number to send
the SMS to and an integer which represents the critical level that the input signal reached. This
function takes several seconds to return as sending an SMS takes considerable time, however it
does not wait to determine whether the SMS was sent successfully. As with connecting to the
server this is determined by calling gprs process() once data is available and

27

GPRS_SMs SENT OK is returned if the SMS was sent, and GPRS RESPONSE ERROR if not.

6.5 Sampling

To sample the ADC two interrupts are used — INT TIMER1 and INT AD. INT TIMERI is set to
trigger at the required sample rate, and calls read adc (ADC_sTART oNLY). This function starts
the analogue to digital conversion process but returns immediately to prevent the PIC from
spending unnecessary time in the INT TIMERI interrupt routine. Once the conversion is complete
the INT AD interrupt is triggered. This routine retrieves the digital value and stores it
appropriately. To ensure InT TIMER1 does not flood the ADC with requests this interrupt is
disabled in it own routine, and only enabled again once the conversion is complete.

Sample timer

To change how often samples are taken the function setup sample timer(long multiply,
SAMPLE TIME time) was written. This accepts a multiplication factor and a SAMPLE TIME enum.
This is the time unit to be multiplied to achieve the required sampling interval. The possible time
units developed are shown in Figure 25.

enum SAMPLE TIME {

SAMPLE_TIME 10us,
SAMPLE_TIME 100us,
SAMPLE _TIME 1lms,
SAMPLE TIME 10ms,
SAMPLE _TIME 100ms,
SAMPLE TIME ls

Figure 25: SAMPLE_TIME enum

The function sets the INT TIMERI interrupt according to the supplied arguments. Setting the
timer is complex so timer values required for each savpLE TIME are hard coded. INT TIMER1
triggers at the saMPLE TIME set, however read adc (ADC START ONLY) is only called once the
timer has been triggered multiply times, achieving the required sample time. This means that
ahhough(xﬂhng setup sample timer (10, SAMPLE TIME 1lms) and.setupisampleitimer(l,
SAMPLE TIME 10ms) tresult in samples being taken with the same time interval,
setup sample timer (1,SAMPLE TIME 10ms) 1s more efficient as INT TIMERL 1is only
triggered once per sample rather than ten times.

Setting TIMER_1

TIMER 1 is a 16 bit counter which triggers INT TIMER1 once it over flows. The counter can be
set to increment every one, two, four or eight instruction cycles (one instruction cycle is equal to
four oscillator periods). The value from which counting begins can also be set. By changing
these values INT TIMERI is triggered at the required time interval. Calculations determining the
correct TIMER 1 setup values for each saMpLE TIME are described in the following paragraph.

oscillator period = 1 / 8MHz = 0.125us

1 instruction cycle = 4 x oscillator period = 0.5us

SAMPLE TIME 10us = 20 instruction cycles. Therefore let TIMER 1 count to 20, incrementing
once every instruction cycle. To make T1MER 1 overflow after counting to 20 set the timer to

28

start counting from 65515, as it will overflow after 65535 (maximum for a 16 bit counter) has
been reached.

SAMPLE TIME 100us = 200 instruction cycles. This can be achieved by various methods. By
setting the timer to increment once every 8 instruction cycles, TIMER 1 must count to 25 before
triggering. Therefore the timer must begin counting at 65510.

SAMPLE TIME Ims = 10 X SAMPLE TIME 100us. TIMERL can be setup the same as before,
however this time it must count to 250 rather than 25. (Begin counting at 65285).

SAMPLE TIME 10ms = 10X saMPLE TIME 1ms. Count to 2500.
SAMPLE TIME 100ms = 10 X sAMPLE TIME 10ms. Count to 25000.

SaMPLE TIME 1s = 10 x saMpLE TIME 100ms. Count to 250000. However TIMER 1 can only
count to 65535 as it is a 16bit counter. Therefore the timer is set to trigger every 0.25s, (count to
62500), however it waits until it is triggered four times.

Sending Samples

When a device is connected to the telemetry unit samples are sent for monitoring. There are
many occasions when it would not be sensible to send every sample. For example if a device is
connected to the telemetry unit via a slow, expensive GPRS connection and the current sample
rate was of the order of micro seconds. Not not only would the data transfer be very costly, but
too slow to handle the volume of data. Therefore another interrupt is used whose timer is set
separately to the sample rate timer. This is INT TIMER2. Once this timer is triggered it sets a flag
indicating that the latest sample should be sent to the connected device. The sample could be
sent within the interrupt routine itself, however this should be executed as quickly as possible.
INT TIMER? is disabled in its own interrupt routine and only enabled again once the sample has
been sent.

Setting TIMER_2

Unlike TIMER 1, TIMER 2 is only an 8 bit counter. TIMER 2 is set differently to TIMER 1.
TIMER 2 can increment every one, four or sixteen instruction cycles, resets once a specified
value is reached, and the INT TIMER2 interrupt routine is only run once the timer has reset a
given number of times. The timer can reset at any value between 0 and 255 and can reset up to
16 times before the interrupt is triggered. For information on how the timer is setup for each
saMPLE TIME please refer to D FIRMWARE.C.

6.6 Main Program

D FIRMWARE.C contains the main program which the PIC executes. This program utilises all
the functions mentioned previously in this chapter.

When the program starts it initialises both the Bluetooth and GPRS modules. Once these
modules are initialised it sits in a continuous loop processing any data received and sending
samples to connected devices.

Incoming data is first processed by the appropriate gprs process () or bluetooth process ()
function. If it is determined to be data sent from a remote device then the function
process_request gprs() O process request bluetooth () is called. These functions
determine what the request is and carry it out. Ideally they would have been combined into one
function which accepted pointers to send and receive functions (GPRS or Bluetooth). This would
allow the function to execute regardless of whether data was being sent and received via
Bluetooth or GPRS. Unfortunately this could not be implemented as CCS does not support
pointers to functions.

29

Live samples are sent when the global send sample flag is set. Samples are automatically
taken via the INT TIMER1 interrupt routine as mentioned previously, and global send sample
is set by the INT TIMER2 interrupt routine when it is time to send a sample.

If the signal reaches the critical level and no device is connected a warning SMS is sent to the
phone number set by the remote device application. Only one SMS is sent regardless on the
number of times the critical level is reached. This prevents the possibility of hundreds of
warning message from being sent. Another SMS is only sent once a remote device has connected
to the telemetry unit and disconnected again.

The flow of the program is shown in Figure 26.

Initialise GPRS Send requested
setting to —
connected devices

START = [nitialise Bluetooth module —] module

Y

ré:qhuael?gd Isrequesta
setting SET request

Send requested
setting to -t
connected devices

Has data

been received Yes » Eransss ki

Is data
from a remote

over :
' Elrigmnge Blustooth deios
R reguested
SET request bl
No
X Set BT status
connected Response
Has data Connected

|5 data
fram remote
device

Yes been received
over
GFRS

Process data

Disconnected

Set BT status
disconnected

No

Set GPRS status
connected

Connected

|5 a remote
device
connected

Is it time
to send

i asample
Disconnected

Set GPRS status
disconnected

Send sample to
remote device

Has SS
already been
sent

Is latest
sample above
critical level

Send critical level No
warning Shs

Figure 26: Main program flow.

30

7 Developing the Java Application

The following section describes the development of the Java application run by a remote device
to control the telemetry unit was developed. All packages, interfaces, classes and methods
detailed in this section were written for this project.

7.1 Java Application Design structure

When designing the Java application there were two main considerations:
e Portability
e Re-usability

Although Java programs can theoretically run on any platform there are still portability issues.
Java contains some API which differs between platforms making it incompatible. This is evident
in the user interface API. Java SE has powerful GUI tools such as swing, whereas Java ME only
has very basic GUI capabilities. A program written using the swing API cannot be ported to Java
ME and vice versa. Even if this were possible it would not necessarily be advised. The design of
a mobile phone GUI has to take into account factors such as small screen size and limited user
input whereas these are irrelevant for desktop applications.

For this reason programming the Java application was split into three separate packages:
® UserInterface
® DataTransfer

® Connection

This allows easy development of platform specific user interfaces without having to rewrite
either the Connection or DataTransfer packages. A graphical user interface has been
developed for standard mobile phones (see section 7.4) however a separate party could easily
develop a user interface for a desktop PC without having to write any low level code as the
DataTransfer and Connection packages provide API to handle this.

The Cconnection and pataTransfer packages handle connection creation and the transfer of
data between the remote device and the telemetry unit. Separating these tasks enabled the
Connection package to be developed generically, and all program specific code encapsulated
within the pataTransfer package. This means that the connection package can be utilised by
other programs and programmers as its API is not specific to this application. This also allows
for ease of updating or amending the connection package if extra functionality is required.
Zigbee connectivity could be enabled by simply adding an appropriate method to the
Connection package without having to alter or understand the pataTransfer package.

The rest of this chapter goes through each of the three packages in more detail.

7.2 Connection Package

The connection package simplifies the complexity of creating Internet and Bluetooth
connections and sending SMS messages. All public methods of the connection class return
immediately and begin the connection process in a new thread. As a result these methods can be
called freely without having to worry about blocking. Once the connection attempt is complete a
callback is made to the ConnectionstatusListener,returning an instance of
StreamConnection representing the connection made. The ConnectionstatusListener
interface defines seven callback methods shown in Figure 27.

31

void bluetoothDeviceFound (String name)

void bluetoothDeviceSearchComplete ()

void connectionEstablishedBluetooth (StreamConnection conn)
void connectionkEstablishedGPRS (StreamConnection conn)

void connectionFailed(String error)

void smsSent ()

volid smsFailed()

Figure 27: ConnectionStatusListener interface callback routines

These callbacks are explained throughout this section. An instance of a class implementing the
ConnectionstatusListener interface, to which all callbacks are made, is required by the
Connection class constructor.

Creating a Bluetooth connection

There are two ways to create a Bluetooth connection. If the direct URL is already known then a
call to bluetoothConnectToUrl (..) attempts to connect to the URL provided.

public boolean bluetoothConnectToUrl (String url)

However the URL is usually unknown. In this case bluetoothSearchForDevices () begins a
search for all available Bluetooth devices.

public boolean bluetoothSearchForDevices ()

Once a device has been discovered a callback is made to bluetoothDeviceFound (..) with the
friendly name of the device.

public void bluetoothDeviceFound (String name)

Once all available devices have been discovered a «callback is made to
bluetoothDeviceSearchComplete ().

public void bluetoothDeviceSearchComplete ()

A connection can then be made to one of the discovered devices by calling
bluetoothConnectToDevice (..) with the friendly name of the device.

public boolean bluetoothConnectToDevice (String name)

If the connection 1S successful then a callback is made to
connectionEstablishedBluetooth(..) providing a StreamConnection object for the
connection.

void connectionEstablishedBluetooth (StreamConnection conn)

If the connection attempt is unsuccessful then an error text is returned through the

32
connectionFailed (String error) callback routine.

Creating an Internet connection

To create an Internet connection a URL and port number are required. The
gprsConnectToUrl (..) method attempts to connect to the URL on the specified port.

public boolean gprsConnectToUrl (final String url, final int port)

If the connection is successful then a callback is made to connectionEstablishedGPRS (. .)
providing a StreamConnection object for the connection.

vold connectionEstablishedGPRS (StreamConnection conn)

If the connection attempt is unsuccessful then an error text is returned through the
connectionFailed (String error) callback routine.

Sending an SMS

To send an SMS the sendsms (..) method was developed which accepts the phone number and
message as two String items.

public void sendSms (final String number, final String message)

A callback will subsequently be made to either smsSent () or smsFailed () depending upon the
status of the SMS.

7.3 DataTransfer Package

This package contains two classes, DataReceiver and DatawWriter. Together they handle all
data transferred between the remote device and the telemetry unit. These classes require an
InputStream Of OutputStream instance which is opened from the streamConnection returned
once a successful connection is made by the Connection class.

There are two main purposes of this package. One of which is to hide the complexity of sending
and receiving raw bytes behind simple methods and callbacks. The other is to ensure that the
sending and receiving of data does not cause unexpected program blocks as this will result in a
non-responsive user interface, freezing the entire application. Therefore all public methods in
this package are non-blocking and return immediately.

Both DataReciever and DataSender extend the Java Thread class. This means that a call to
start () begins the classes run () method in a new thread. It has been ensured that all methods
of both classes are thread safe by using synchronized statements where required. For these
classes to operate correctly a call to start () is made before calling any other methods. To end
the thread created the ki11 () method was developed for each class.

DataReceiver

This class receives data sent to the device from the telemetry unit. All incoming data is handled
in the separate thread to prevent blocking. This thread waits to receive data, processes it and then
a callback to is made to a relevant DataReceiverListener method. The
DataReceiverListener interface is shown in Figure 28.

33

voilid connectionConfirmed/ ()

void gotSampleRate (int units, int largeMultiplier, int
smallMultiplier)

void gotDisplayRate (int units, int largeMultiplier, int
smallMultiplier)

void gotPhoneNumber (String phoneNumber)
void gotCritiallevel (int criticallLevel)
void gotSample (int sample)

void readTimeout ()

void disconnected ()

Figure 28: DataReceiverlListener interface.

A class which implements this interface must be supplied in the DataReceiver constructor. All
callbacks are made to the methods implemented by this class.

DataReceiver buffers all received bytes. These bytes are then analysed according to the
command headers defined in Header. Once a valid header has been received DataReceiver
waits for the remaining data needed to complete the command. A time-out begins. This ensures
that any erroneous bytes received do not cause the thread to wait for data that is not being sent.
This time-out starts a new thread which expires after a set time period. If all the data has not
been received by the time this thread expires then DataReceiver ignores the current command
and calls readTimeout (). If all the data is received in time then the time-out is cancelled, data
processed, and if valid then the associated DataReceiverListener method is called.

Ideally the DpataReceiverListener methods should be called in new threads so that
DataReceiver can return to receiving data as soon as possible. However this would require all
methods in any implementation of the DataReceiverListener interface to be thread safe. For
simplicity this has only been implemented for the gotsample () method, demonstrating how this
can be achieved.

The pataReceiver thread can be stopped at any point by calling the public ki1l () method.
DataReceiver then closes the Inputstream and kill the thread in which it is running.

DataSender

This class sends data to the telemetry unit. Calls to the Datasender public methods enqueue the
data to be sent and return immediately. The separate thread sends the queued data.

The public methods of Datasender are shown in Figure 29.

public void setPhoneNumber (String number)
public void setCritiallevel (int criticallLevel)
public void setServerUrl (String serverUrl)

public void setSampleRate (int units, int largeMultiplier, int
smallMultiplier)

public void setDisplayRate (int units, int largeMultiplier, int
smallMultiplier)

34

public void requestSampleRate ()
public void requestDisplayRate ()
public void requestPhoneNumber ()

public void requestCritialLevel ()

public void requestServerUrl ()

Figure 29: DataSender public methods.

These methods are split into to categories — set and request. The set methods are for changing the
telemetry unit settings, and the request methods request for the telemetry unit to send the current
value of the setting. The telemetry unit automatically sends back the value of a setting if an
attempt is made to change it. These methods hide the complexity of sending correct headers and
ensure that all data is formatted correctly. As mentioned previously they return immediately as
data to send is queued and sent in the separate thread to ensure that no blocking occurs.

7.4 Userinterface Package

The userInterface package provides a user interface for the pataTransfer and Connection
packages. The UserInterface package developed for this project was written for mobile
devices running Java ME. It hides pataTransfer and DataConnection methods behind
aesthetically pleasing, easy to use graphical menus, icons text boxes and alerts.

J2ME Polish

Java ME provides several basic graphical user interface components. These include simple
forms, lists, splash screens and alerts. After initial testing it was decided that these components
were not adequate for what was required. Their appearance cannot be changed, menus cannot be
renamed, navigation is awkward and overall they are very inflexible. A GUI could have been
constructed using these components but it would have been far from ideal.

After research on the Internet, J2ME Polish was discovered. This is a tool suite which provides
highly flexible user interface components. These components are similar to the ones provided by
Java ME but are much more flexible, and have a fully customisable appearance which is defined
in a separate CSS file. This allows programmers to create an interface and designers to make it
visually appealing without having to change any code. The code must be compiled using the
J2ME polish compiler which is provided with the suite.

Currently J2ME Polish is not supported by the Netbeans 'drag and drop' user interface design

tool which allows users to visually develop user interfaces. Therefore all screens and navigation
had to be hand coded.

J2ME Polish is available free for non-commercial use from [11].
Overview

The GUI class implements both the ConnectionstatusListener and DataReceiverListener
interfaces. Connections are made using an instance of Connection. Data is sent using a
DataSender instance and data is received through a DataReceiver instance. Its members
include all the user interface components as well as the copies of the current settings. User
interface screens are accessed via getNameOfUIComponet () methods which ensure that the Ul
components are constantly up to date displaying the latest settings received from the telemetry
unit.

35
The remainder of this section describes some of the key methods of the GUI class.

Visual Appearance

The visual appearance of all the J2ME Polish user interface elements is defined by a CSS file.
Different elements support different CSS attributes, however many attributes are supported by
all elements. CSS styles can be define and used on many elements making it easy to experiment
with different appearances. For detailed information on which CSS attributes are supported
please see the J2ME Polish documentation which can be found at [11]. Among other attributes
CSS was used to define:

e Element layout

e Text size / font / colour

e Background style and colour
e Border style and colour

e Hover effects

e Screen transitions

e Screen size

e Images

An example of the CSS code used to describe a section of the main menu is shown in Figure 30.

.mainScreen {

padding: 2;
padding-left: 10;
padding-right: 10;

layout: horizontal-expand | horizontal-center | vertical-center;
view-type: dropping;
screen-change-animation: fade;

background {
type: horizontal-stripes;
first-top-color: brightBgColor;
second-top-color: white;
first-bottom-color: blue;
second-bottom-color: black;

Figure 30: Example CSS code

For a full list of CSS styles used please refer to polish.css in the Remote Device Application
resources folder.

Keeping the user updated

To ensure that user is fully up to date with how the telemetry unit is operating a console window
was developed. The console is a small window which automatically rises up from the bottom of
the screen displaying information which is relevant to the user. If multiple items need to be
displayed on the console then the user can either scroll through them or ignore them by closing
the console. Typical information displayed on the console is connection status and confirmation
of a changed setting. This is important if two remote devices are connected to the telemetry unit

36
as it keeps both users aware of changes the other is making.

Handling received data

When the pataReceiver instance (class member read) has received data, callbacks are made to
the cuz class methods which implement the DataReceiverListener interface.

If the data received is the value of a telemetry unit setting then the member instance which
represents that setting is updated and the console appears informing the user of this change.

If the data is the value of the latest sample then this value is displayed in the title bar of the main
menu, and plotted on the visualiser if it is active. Updating the visualiser is a graphical rendering
process which can take considerable processor time so is processed in a separate thread. During
testing it was found that at very high display rates that samples were 'queuing up' to be rendered
on the visualiser. This meant that the visualisation was no longer real-time. To prevent this if a
sample is received and the visualiser is currently being rendered then the sample is ignored.

If the pataReceiver instance encounters an error (such as invalid data, or a read time-out) then
a message window pops up informing the user of the error.

Sending data

When the user changes a setting using the various input forms this change is sent to the
telemetry unit through the pataSender instance (write). The setting does not immediately
change on the GUI just in case the change is unsuccessful. The GUI changes once the telemetry
unit has confirmed the changed setting. The user is informed of this through the console.

Visualiser

Development began on a visualiser to display incoming samples in the style of an oscilloscope
display before J2ME Polish was discovered. This visualiser was written using low level API,
coding at a pixel level. The visualiser automatically adjusted to different device screen sizes,
enabled zoom functions and resolution, time scale and axis labels could all be changed. However
this visualiser was still in the early stages of development when J2ME Polish was discovered
and time did not permit to continue development. This visualiser can still be accessed by
clicking 'Full Screen' however it contains many bugs and much of the functionality is
unavailable. The source code is available within the UserInterface package.

J2ME Polish provides a chartItem class. This class is used to display numerical data in a visual
form of bar charts, pie charts or line graphs. This class was created by J2ME Polish to display
static data, however by constantly changing the data displayed by the chart appears like an
oscilloscope display. When the device receives samples they are held in a shift register, with
each incoming sample being entered at one end and the oldest sample being remove from the
other.

The shift register is then plotted as a line graph. As more samples are received the previous
samples shift through the register, with the graph replotted after each sample received. The graph
appears to show the continuous flow of a signal. This solution is much simpler than the previous
visualiser, however it is less flexible. Despite this it was decided that it was adequate and
development of the other visualiser was put on hold.

If the signal goes above the critical level then the user is informed by exclamation marks in the
title bar, and the displayed signal changes colour from blue to red.

37

7.5 Data flow diagram

Figure 31 shows the communication flow between the end user and the classes developed for
this application. The thin black arrows represent methods being invoked.

DataSender GUI

setPhoneNurber (..)
setCritialLevel(..) - =
setServerlrl(..)

setSsmpleRate(. . |
4' O 5ot semrEmRssam o] User Input

requestSanpleRate ()

reguesthisplayRate ()
regquestPhonelundber ()
regquestCritiallevel()
requestServerirl ()
sendConnectionConfirmationi)

Connectlon bluetoothDeviceFound| . .)
blustoothbevicelearchComplete ()

- connectionEstablishedBluscoothi.)
gprsConnectTolrl(..) connectionEstablishedGPRS (..)
bluetoothlearchForDevices(..) connectionFailed(..)
bluetoothConnectTabevice (..) smsSent ()
blustoothConnectTolrl(. .} | cweFailed() -
sendimsi. .

Screen
connectionConfirmed ()
P gotSampleRate (. .}
DataReceiver gothisplayRace(. .)
gotPhoneNunber (. .)
| | - gotCritialLeveli..)

gotSample(. .}

W readTimeout ()
disconnected()

Figure 31: Flow of data in the remote device application

38

8 The Relay Server application

To enable access to the the telemetry over the Internet a relay server was developed. The relay
server must be run on a desktop computer or laptop with a permanent internet connection. The
relay server waits for two connections on a specified port and then relays data between the two.
Once either connection closes the relay server closes the remaining connection, and waits for
another two connections.

The relay server was also programmed in Java, and is contained in the RelayServer package.

8.1 RelayServer package

The rRelayserver package contains the socketRelay and sever classes and Serverstatus
interface. Each of these are described in more detail throughout this section.

SocketRelay

The socketRelay class relays data between two sockets, provided in its constructor. It is a
Runnable class as it must be run in its own thread. Two instances of SocketRelay are required
to construct a fully functional relay because each instance relays data in a single direction — the
output of one socket to the input of another.

IN > SocketRelay IN

Socket 1
Socket 2

OouT | . SocketRelay ouT

Figure 32: Diagram showing how the SocketRelay class relays data.

Each relay sits in an infinite loop relaying data until it detects that one of the sockets has closed.
It then informs the server instance (to which a reference was given in the SocketRelay
constructor) that the relay has closed before shutting down all activity.

Server

The server class is the main class in the Relayserver package. The server class opens a
server side socket on the designated port. It waits for connections on that port. Once one
connection has been established it continues to listen for another connection. Once a second
connection has been established a check is made to ensure the first connection is still alive
before creating two instance of socketRelay to relay the data. While data is being relayed no
more connections are accepted. Once the relay has shut down all sockets and connections are
closed before restarting the server, listening for the the next two connections. The public
methods shown in Figure 33 were developed to control the server.

public void setPort (int portnum) ;
public void startServer();

public void stopServer () ;

39

public String getClientlIP () ;

public String getClient2IP () ;

Figure 33: Methods developed to control the server.

ServerStatus

Serverstatus 18 an interface defined to enable the server class to send information updates
about the current status of the server via call back routines. The call backs defined are shown in
Figure 34.

public void clientlConneted (boolean status);
public void client2Conneted (boolean status);
public void serverRunning(boolean status);
public void relayActive (boolean status);

public void writeBytesToConsole (byte[] bytes, int length);

public void writeStringToConsole (String text);

Figure 34: Server status call back routines

These methods are called whenever there is a change to the status of the server. This enables
monitoring of server activity and any data relayed over the server. The instance of a class which
implements the serverstatus interface is passed in the server class constructor.

ServerVisual

ServervVisual is an example of a GUI for the RelayServer, implementing the Servervisual
interface. It enables the user to choose on which port the server should be run, as well as the
option to start and stop the server. It displays the IP address of any connected clients, whether the
relay is currently active as well as displaying any data that has been relayed.

B Re lay Server, [ZI @l FX|

Relay Server

Port: |21000 |

Clear

Start Server

Stop Server

Server : STOPPED
Relay: DISABLED

Client 1: ...

Client 2: ...

Figure 35: A screen shot of the relay server application

40

9 Telemetry System Data Flow

il

gpra_send byte(.

GSM

gprs_recv_byte()

rs232_commw2 _buffer

INT_EXT

Modem

.

Main code

PIC Micro controller

| I
bluetooth_recv_ byte()

rs232_comml_bhuffer

INT RDA

h J

Gl

blustooth send bytel.

Bluetooth
Module

PC
Server

Visual output

Device 1
DataReceiver GUI
ReadSample () connectionConfirmed ()
readPhonenwber [) gotSampleRate (..
readDisplayRat gotDisplayRate)
1 readSamp leRate gotPhonelwber (. .)
readCritiallevel () gotCritiallevel {..]
gorSample(..}
readTimeout ()
disconnected ()
DataSender
serPhonelumber . .)
setCritialLevel(..)
setServerUcl(..)
serSampleRare(. .|
setDisplayRate(..)
requestiampleRace ()
requestDisplayRate () h @
requestPhoneNumber () a0 |

requestCritiallevel()
requestServerlcl (]
sendConnectionConfirmation)

Human Input

Device 2

DataReceiver

GUI

TTTOLLITT =

ReadSample ()
readPhonenunber ()
readDisplayRate ()
readSampleRate ()
readCritialLevel(}

—

DataSender

connectionConfirmed!)
gotSampleRats (.
gotDisplayRate |
gotPhoneNunber |
gotCrivialleveli..|

gotSample |
readTimeout
disconnected()

'

Visual output

= LILTLINTTY

Input signal from
sensory equipment

setPhoneNumber (. .}
sercritialleveli..)
setServerirll..)
setSempleRate(..)
setDisplayRate (..}
requestiampleRate ()
requestDisplayRate ()
requestPhoneNunber ()
reguestCritiallevell(]
requestierverlel ()

sendConnectionConfirmation ()

commandiction

(-1

Human Input

telemetry system developed. Please refer to the

relevant sections in chapters 7 and 8 for more information

The overall flow of data through the entire

Fig 36

41

10 Testing

Testing was split into three stages — telemetry unit testing, remote device application testing and
overall system testing.

10.1 Telemetry Unit testing

As an object orientated approach was taken when programming the telemetry unit each class was
tested individually to ensure its validity.

Data Structures

The first classes to be tested were the buffer and circular buffer classes. This ensured that
there were no memory leaks and data was stored and retrieved from the buffers correctly. Once
these classes had been tested the RS232 interfaces were tested.

RS232 Interfaces

The RS232 interfaces were tested by sending bytes to and from a computer to the telemetry unit
via an RS232 cable. These bytes were then displayed on the development board LCD and cross
checked. Many different scenarios such as attempting to overflow the receive buffers were
tested.

Bluetooth and GPRS

Once the operation of the RS232 interfaces had been confirmed the Bluetooth and GPRS
functions were tested by sending commands to the Bluetooth module and GPRS modem
respectively. The responses were then displayed on the development board LCD. The operation
of the actual Bluetooth module and GPRS modem was first confirmed by connecting them to,
and operating them from a computer.

Sample and Display timers

The timing of the sample and display timers was tested by changing the state of an output pin
each time the interrupt was triggered. This output was then viewed on an oscilloscope to ensure
the correct timing was being achieved.

10.2 Remote Device application testing

The remote device application was tested by creating a program that simulated the telemetry
unit. This program was written in Java for a desktop computer. The program interpreted data and
gave the same responses as way the telemetry unit would. This program had the ability to
display exactly what data was being sent and received, allowing accurate debugging.

The program was used to test the remote device application when samples were being sent at
very high rate. This was crucial in ensuring that the application could handle such speeds.

10.3 Overall system testing

Once both the telemetry unit and remote device application had been tested individually the
overall system was tested. This proved very helpful in fine tuning the telemetry unit software.
When two devices were connected and a high display rate was used it was found that the
telemetry unit was prone to corrupting data and becoming stuck in infinite loops while sending /

42

receiving data.. This was prevented by refraining from using time consuming LCD statements.,
prioritising interrupts and disabling certain interrupts at appropriate times.

43

11 Telemetry System User Guide

This guide explains how to use the remote device Java application.

11.1 Getting Started

The telemetry unit control application is a Java application designed to control the telemetry
unit. It enables live data analysis and full configuration of the telemetry unit.

Requirements

Any Bluetooth or GPRS enabled device supporting the Java ME CLDC 1.1 MIDP 2.0 profile or
higher.

Installation

Download the application .jar and .jad files to the required device via the most convenient
method, for example using Bluetooth or via a USB cable. Run the .jad file on the device and the
application will be installed automatically. To run the application locate where it has been
installed (usually in 'Games' or 'Applications') and click on the relevant icon.

Navigation

The application is easy to navigate, just use the default navigation keys on the device you are
using. Options and menus are clearly displayed on screen, however more options for the current
screen can often be accessed by clicking 'Menu'.

11.2 Using the application

Once the application has been launched the the main menu screen appears. This presents six
options as shown in Figure 37.

Connect Visualiser TU Options TU Settings Help Quit

Figure 37: Main menu options

The first for options are explained in more detail throughout this section. The Help option
displays a brief explanation of how to use this application and the Quit option exits the
application.

Connection Menu (Connecting to the telemetry unit)

Once selected this takes you to the connection screen. From here you can choose how to connect
to the telemetry unit. The connection types currently supported are Bluetooth and GPRS. The
telemetry unit can support a single Bluetooth and a single GPRS connection simultaneously.

A connection demonstration is shown in Figure 38 on page 46.

44

Bluetooth

The application searches for all visible Bluetooth devices within range. Please be aware that the
range of the telemetry unit is approximately 10m however obstructions such as walls may reduce
this. Once all devices have been found (this will take a few seconds) a list is presented from
which the telemetry unit can be selected. If the telemetry unit is not found then please check that
you are within range of the telemetry unit, the device running the application has Bluetooth
switched on and that this application has permission to access local connectivity. Once a
successful connection has been made you are automatically re-directed to the main menu screen.
If the connection fails an alert is displayed with the corresponding error message.

If possible connecting via Bluetooth is recommended over GPRS due to higher reliability, higher
transfer speeds and free data transfer.

GPRS

A GPRS connection is made in two stages. An SMS is sent to tell the telemetry unit to connect to
the server. Once this SMS has been sent the device itself connects to the server. Please be aware
that there are costs involved in both sending and receiving data over GPRS and sending SMS
messages. Please contact your service provider for pricing information. Once a successful
connection has been made an you are automatically re-directed to the main menu screen. If the
connection fails an alert is displayed with the corresponding error message. If the connection
fails please ensure that:

e Both the device and telemetry unit have sufficient credit.

e Both the device and telemetry unit are connecting to the correct server address.

e The device has the correct phone number of the telemetry unit

e The server is currently running and not blocked by any firewalls

e The application has permission to send SMS messages and GPRS data
To change the server address to which the device connects and the phone number of the
telemetry unit please scroll across to GPRS and then click on the 'Settings' option.

Visualiser

The visualiser plots samples sent by the telemetry unit. This can be used to analyse the signal
sampled by the telemetry unit. The visualiser displays up to the last 50 samples received with a
scale of 0-5V. The number of samples displayed at once can be altered through the 'Resolution’
menu. This feature helps to maximise use of the screen. The rate which the telemetry unit
samples the waveform and the rate at which samples are sent to the device can be changed via
the 'Options' menu. At the bottom of the visualisation the duration of the signal displayed is
shown.

If the signal rises above the critical level then the signal changes from blue to red. The critical
level can be changed via the main menu 'Options' menu.

A demonstration of the visualiser can be found on page 47.

Telemetry Unit Options

The options menu allows you to change to the telemetry unit s sampling and data analysis
options. The sample rate, display rate and critical level can all be changed. Once a setting has
been changed it is not updated immediately on the application. The application waits for
confirmation from the telemetry unit to confirm the change. A console window is shown once
the changed setting has been confirmed.

45

An example of how to change a telemetry unit option is shown in Figure 41 on page 48.

Sample rate

The sample rate is how often the telemetry unit samples the incoming signal. This is changed by
altering the three sliders presented. The first represents the time unit to be used, and the second
two sliders are multiplied together to determine the number of this time unit to delay between
each sample. There are over one hundred sample rates to choose from, ranging from lus to 900
minutes.

Display rate

The display rate is how often the telemetry unit sends a sample to connected devices. Each time
a sample is received its value is displayed in the main menu title bar and graphically in the
visualiser if it is active. The display rate can be changed in the same manner as the sample rate.

Please note that due to the speed restrictions and expense of data transfer over GPRS if the
display rate is set below 100ms a device connected via GPRS will not be sent any samples.

Critical Level

The critical level is the level which the incoming signal should never exceed, and if this happens
immediate notification is required. The critical level can be set at any value between 0 — 256,
with 0 representing 0V, 255 5V and 256 infinity (no critical level). If the critical level is reached
you are notified by exclamation marks appearing on the main menu title bar. If no device is
connected to the telemetry unit and the critical level is reached then a SMS message is sent by
the telemetry unit to the phone number specified in the telemetry unit options.

Phone number

If the input signal reaches the critical level and no device is connected the telemetry unit will
sends a warning SMS to this number.

Please note that only one SMS is sent, even if the input signal continues to stay above the critical
level. This is to prevent the possibility of hundreds of SMS messages being sent. A SMS is only
sent again once a device has successfully connected to and disconnected from the telemetry unit.

Remote Device Settings

The settings menu allows you to change the remote device connectivity settings.

An example of how to change a setting is shown in Figure 40 on page 47.

Phone number

This is the phone number of the telemetry unit. A SMS is sent to this number requesting the
telemetry unit to connect to the relay server before the remote device connects to the relay
server.

Server address

This is the address the remote device connects to when a GPRS connection is requested.

46

Creating a Bluetooth connection

Dptinnsﬁ

Choose 'Connect' From the Main Select 'Bluetooth' and click to Wait while devices are found
Menu screen proceed

Select Device
Dan-K800i Alert

Telemetry Unit onnected to Telemetry Uni
Danny-PC |

Connect

Choose the device to connect Wait while a connection is made A connection has now been
established

Figure 38: Bluetooth connection demonstration

47

Visualiser

Full SeFeen ¢ Full SeFeen Full SeFeen

Demonstration of the Visualiser displaying a signal. These screen shots were taken just a few
samples apart.

Figure 39: Demonstration of the visualiser

Changing a device setting

Phone Number Phone Number

07779174055 23

Server Address
www.danny.gotdns.com

07221456985

Choose the 'Settings' option for Choose the setting to change Change the setting and press
the Main Menu and press edit save

Figure 40: Demonstration of changing a device setting

48

Demonstration changing a Telemetry Unit option

Display Rate
Sample Rate
300 micro seconds
Phone Humber
07374859604
Critical Level

) [[Edit
Update
Optiohs — ¢ Select™
Select 'Options' from the Main The Options menu is then Choose the option to change
Menu presented and click Options->Edit

Display Rate
60 milli seconds
Sample Rate

Phone Numhber

07374859604
Critical Level
218
Sample Rate : 70 seconds
e e Options
Change the option as required Once the telemetry unit has The setting has now been
and click save successfully changed the option changed

a notification is shown

Figure 41: Demonstration of changing a telemetry unit option

49

12 Project Conclusion

The project has been a complete success. Development of the Wireless Telemetry System has
exceeded all expectations and proved to be both an enjoyable and education experience.

12.1 Skills development

Whilst developing the wireless telemetry system many skills were acquired. They include:
e Java programming
e C programming
e Server programming
e Multi threading
e Interrupt handling
e Graphical user interface development
e (CSS style sheet creation
e Researching and experimenting with new technologies

Technical skills and knowledge used throughout the project ensured the success of the system
and provided innovative solutions to problems encountered; such as the creation of a relay
server.

12.2 Wireless Telemetry System development

The system developed is accessible by any device with Bluetooth connectivity, an internet
connection or GPRS connectivity from anywhere in the world. It is fully operational and very
reliable. The remote device application is user friendly and has a graphical user interface which
looks more professional than a lot of mobile Java applications currently available. The system is
very flexible allows users full control of all settings.

Both the PIC software and Java application have been developed to allow extensions and
improvements. The Java application is written so new user interfaces and connection
technologies can be developed by third parties who are not required to understand the operation
of the system at a low level.

The code provided is highly reusable and designed to be utilised by other programmers. The
Java connection package developed was used by a fellow student to create a Java application to
transfer data over Bluetooth. This helped them to produce a successful final year project.

Through internet research no similar systems were found without spending a considerable
amount of money. With the extra features described in the appendix this system could become a
marketable product.

50

13 Appendix
13.1 Project Extension (Extra Features)

There are several features which could be added to improve the wireless telemetry system. These
include:

e Attaching storage so samples can be saved for later analysis.

e Implementing a control interface so that a signal can be analysed and appropriate control
action could then be applied by the remote device.

e Adding security to the system

These features could be implemented relatively easily. An SD card module could be attached to
the telemetry unit allowing samples to be written to an SD card. This SD card could then be
removed and data transferred to a computer, or the data could be sent via Bluetooth or GPRS if
required.

A interface could be implemented on the telemetry unit to send control signals by simply raising
the voltage on set pins or via RS232 communication. Commands could then be sent from the
remote device and relayed on to control equipment by the telemetry unit. This would require
adding functionality similar to the simple messenger application which passed messages from a
remote device onto an LCD display.

13.2 Project Construction

Before the telemetry system can be used a simple PCB needs designing for the telemetry unit.
Currently the PIC and Bluetooth module are powered via the development board. The PCB
would also need to house a battery as well as the PIC and Bluetooth and GPRS modules. A
connection input would also be required for the signal to be sampled.

[1]
(2]
(3]
[4]
[3]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

14 References

http://www.bluetooth.com/Bluetooth/Learn/Technology/Compare

http://www.filesaveas.com/gprs.html

http://www.microchip.com

http://www.sena.com/products/industrial bluetooth/esd.php

http://www.roundsolutions.com/aarlogic/index.htm

http://www.roundsolutions.com/gsm-terminal/index.htm

http://www.sonyericsson.com

http://www.ccsinfo.com

http://notepad-plus.sourceforge.net/uk/site.htm

http://www.netbeans.org

http://www.]2mepolish.org

http://developers.sun.com/mobility/apis/articles/bluetoothintro/index.html

http://developers.sun.com/mobility/apis/articles/bluetoothintro/index.html

http://www.dyndns.com

http://en.wikipedia.org/wiki/Telemetry

51

http://en.wikipedia.org/wiki/Telemetry
http://www.dyndns.com/
http://developers.sun.com/mobility/apis/articles/bluetoothintro/index.html
http://developers.sun.com/mobility/apis/articles/bluetoothintro/index.html
http://www.j2mepolish.org/
http://www.netbeans.org/
http://notepad-plus.sourceforge.net/uk/site.htm
http://www.ccsinfo.com/
http://www.sonyericsson.com/
http://www.roundsolutions.com/gsm-terminal/index.htm
http://www.roundsolutions.com/aarlogic/index.htm
http://www.sena.com/products/industrial_bluetooth/esd.php
http://www.microchip.com/
http://www.filesaveas.com/gprs.html
http://www.bluetooth.com/Bluetooth/Learn/Technology/Compare/

