
1

Contents

1 Project Overview..............................................................................................................................4

2 Project Introduction.........................................................................................................................5

2.1 Project aim............................................................................................................................5
Telemetry unit (TU)........................................................................................................................................5
Remote Device (RD)......................................................................................................................................5

2.2 Technologies used.................................................................................................................5
Bluetooth........................................................................................................................................................6
General Packet Radio Service (GPRS)...........................................................................................................6
Microcontroller...............................................................................................................................................6
Java ................................................................................................................................................................7

3 Hardware and Software...................................................................................................................8

3.1 Hardware...............................................................................................................................8
Microcontroller...............................................................................................................................................8
Bluetooth Module...........................................................................................................................................8
GPRS Modem.................................................................................................................................................8
Remote device................................................................................................................................................9

3.2 Software................................................................................................................................9
PIC Programming...........................................................................................................................................9
Remote Device Programming.........................................................................................................................9

4 Basic Connectivity.........................................................................................................................10

4.1 Bluetooth.............................................................................................................................10
Telemetry Unit (acting as a server)...............................................................................................................10
Remote Device (acting as a client)...............................................................................................................10

4.2 GPRS..................................................................................................................................13
GPRS connection problems..........................................................................................................................13
Relay Server.................................................................................................................................................13
Telemetry Unit..............................................................................................................................................14
Remote Device (Client)................................................................................................................................15

4.3 Simple Messenger Application...........................................................................................16

5 Wireless Telemetry System Specification...................................................................................17

5.1 Connectivity........................................................................................................................17
5.2 Functionality.......................................................................................................................17

Telemetry Unit..............................................................................................................................................17
Remote Device.............................................................................................................................................18

5.3 Data Transfer......................................................................................................................18
Sending data – Remote Device to Telemetry Unit ......................................................................................19
Sending data – Telemetry Unit to Remote Device.......................................................................................20

6 Programming the Telemetry Unit.................................................................................................21



2

6.1 Object style approach.........................................................................................................21
6.2 Data structures....................................................................................................................21

Buffer............................................................................................................................................................21
Circular_buffer.............................................................................................................................................22

6.3 RS232 Communication.......................................................................................................23
Receiving data..............................................................................................................................................23
Sending data.................................................................................................................................................24

6.4 Bluetooth and GPRS...........................................................................................................25
Sending and receiving data...........................................................................................................................25
Initialising the GPRS modem.......................................................................................................................26
Processing received data...............................................................................................................................26
Connecting to the server...............................................................................................................................26
Sending an SMS...........................................................................................................................................26

6.5 Sampling.............................................................................................................................27
Sample timer.................................................................................................................................................27
Sending Samples...........................................................................................................................................28

6.6 Main Program.....................................................................................................................28

7 Developing the Java Application..................................................................................................30

7.1 Java Application Design structure......................................................................................30
7.2 Connection Package............................................................................................................30

Creating a Bluetooth connection..................................................................................................................31
Creating an Internet connection....................................................................................................................32
Sending an SMS...........................................................................................................................................32

7.3 DataTransfer Package.........................................................................................................32
DataReceiver................................................................................................................................................32
DataSender....................................................................................................................................................33

7.4 UserInterface Package........................................................................................................34
J2ME Polish..................................................................................................................................................34
Overview......................................................................................................................................................34
Visual Appearance........................................................................................................................................35
Keeping the user updated.............................................................................................................................35
Handling received data.................................................................................................................................36
Sending data.................................................................................................................................................36
Visualiser......................................................................................................................................................36

7.5 Data flow diagram..............................................................................................................37

8 The Relay Server application........................................................................................................38

8.1 RelayServer package..........................................................................................................38
SocketRelay..................................................................................................................................................38
Server............................................................................................................................................................38
ServerStatus..................................................................................................................................................39
ServerVisual..................................................................................................................................................39

9 Telemetry System Data Flow.........................................................................................................40

10 Testing...........................................................................................................................................41



3

10.1 Telemetry Unit testing......................................................................................................41
Data Structures.............................................................................................................................................41
RS232 Interfaces...........................................................................................................................................41
Bluetooth and GPRS.....................................................................................................................................41
Sample and Display timers...........................................................................................................................41

10.2 Remote Device application testing...................................................................................41
10.3 Overall system testing.......................................................................................................41

11 Telemetry System User Guide....................................................................................................43

11.1 Getting Started..................................................................................................................43
Requirements................................................................................................................................................43
Installation....................................................................................................................................................43
Navigation....................................................................................................................................................43

11.2 Using the application........................................................................................................43
Connection Menu (Connecting to the telemetry unit ).................................................................................43
Visualiser......................................................................................................................................................44
Telemetry Unit Options................................................................................................................................44
Remote Device Settings................................................................................................................................45

12 Project Conclusion......................................................................................................................49

12.1 Skills development............................................................................................................49
12.2 Wireless Telemetry System development.........................................................................49

13 Appendix.......................................................................................................................................50

13.1 Project Extension (Extra Features)...................................................................................50
13.2 Project Construction.........................................................................................................50

14 References....................................................................................................................................51



4

1 Project Overview  
This report details the work into a small, portable, battery powered remote sensing unit that can 
be  communicated  to  using  both  internet  (over  GPRS)  and  Bluetooth  enabled  devices.  The 
control is bidirectional allowing runtime parameters to be changed at the device (with other users 
accessing the system being notified of configuration updates being transferred).
Data recorded from sensors on the system can be displayed graphically on all devices connected 
to the system. An additional extension to the system is the use of SMS alerts when specified 
levels are exceeded (for example the temperature of an experiment).
A typical scenario for the use of the system would be analyse the temperature fluctuations of a 
chemical reaction over several hours where continual monitoring by individuals is not possible 
(due for example to the climate in which the reaction is taking place).
The system in such a case would be connected to temperature sensors and placed where the 
reaction is  running.  Alerts  are generated and sent to the user’s  mobile phone if  the reaction 
exceeds a specified temperature limit; furthermore the facility exists to check on the reactions 
progress at any time by using a mobile phone or logging on to any available computer.



5

2 Project Introduction  
This chapter describes the aims of the project undertaken and gives a brief introduction to the 
technologies used.

2.1 Project aim  

The aim of this project was to design and build a wireless telemetry system. The system consists 
of two main elements,  a telemetry unit  and a remote device.  The telemetry unit  is  a small, 
portable, easy to install unit. Sensory equipment feeds a signal into this unit. A remote device 
can then connect to the telemetry unit to analyse and monitor the signal. 
This project concentrated on the development of the telemetry unit and a software application for 
remote devices rather than data acquisition from sensory equipment. 
Figure 1 shows a block diagram of the telemetry system. A solid arrow represents wired data 
transfer, and a dashed arrow represent wireless data transfer. 

Figure 1: Wireless telemetry system block diagram

In this report telemetry unit may be referred to as the TU and remote device as RD.

Telemetry unit (TU)

The telemetry is a portable, battery powered unit. Sensory equipment is connected directly to the 
unit,  however  all  data  communication with remote devices  is  wireless.  As a  result  only the 
telemetry unit itself is required to be in the monitored environment. The telemetry unit is small 
and  easily portable  so sensory equipment  can  to  be placed  wherever  it  is  required,  without 
having  to  worry  about  the  requirements  of  large  complex  data  processing  devices  such  as 
desktop computers. . 

Remote Device (RD)

Remote devices can communicate with the telemetry unit via a purposely designed software 
application.  This  application  can  run  on  many everyday electronic  devices  such  as  desktop 
computers,  mobile  phones  and  PDAs.  Therefore  communication  is  possible  without  a 
specifically designed device, resulting in reduced costs, greater flexibility and convenience for 
the end user.  

2.2 Technologies used  

Through research it was decided that a combination of Bluetooth, GPRS (General Packet Radio 
Service),  microcontroller  and Java technologies were to be used for developing the wireless 
telemetry system. This section introduces these technologies and gives reasoning as to why they 
were chosen.



6

Bluetooth

Bluetooth is a standard for short range, low power consumption wireless communication. It can 
achieve high data rates (up to 3 Mbps [1]) and uses relatively inexpensive hardware. Unlike infra 
red  it  does  not  required  direct  line  of  sight  between transmitter  and  receiver.  Many mobile 
devices such as laptops and mobile phones now come with Bluetooth connectivity as standard. 
The range of Bluetooth communication is between one and 100 meters depending on the class of 
device used. The majority of devices use class two Bluetooth limiting communication range to 
10m. 
A viable alternative to Bluetooth is Zigbee. Zigbee offers greater range at significantly lower 
power consumption compared to Bluetooth. However Zigbee has a lower data rate (maximum 
250Kps [1]) and is still  in its  infancy.  As a result very few devices cater for Zigbee, unlike 
Bluetooth which is very widespread.  

General Packet Radio Service (GPRS)

Bluetooth has both low power consumption and high transfer rates, however its limitation is 
range. To increase the range of the telemetry system an alternative technology was required. 
An ideal solution was to enable devices to communicate with the telemetry unit over the internet. 
Internet access is widely available and many common devices now have Internet connectivity. 
To give the telemetry unit internet access it could have been connected to an internet enabled 
network. Such networks are now commonplace in nearly all institutions, workplaces and homes. 
Wi-Fi  chips  can  connect  to  these  networks  wirelessly,  however  they  consume  considerable 
power, require a wireless network to be present and complex configuration.
An alternative way to connect to the Internet is over GPRS. GPRS is a packet orientated mobile 
data service which connects to the Internet via mobile phone networks. It is much slower than 
both Wi-Fi and Bluetooth (data rates up to 171Kbps [2]) and data transfer is not free. However 
an  internet  connection  can  be  made  via  GPRS  wherever  mobile  signal  is  available,  so  no 
network infrastructure is required. 
GPRS connectivity was incorporated in conjunction with Bluetooth connectivity. Bluetooth is 
used for short range communication as is is faster and data transfer is free. When long distance 
communication is required GPRS is available. 

Microcontroller

The telemetry unit is controlled by a microcontroller. There are several key features which make 
microcontrollers ideal for this application

● Widely availability
● Low cost
● Low power consumption
● Re-programmability
● Ease of development

Micro controllers often have integrated features such as an ADC to sample the signal and a 
UART for serial communication. The microcontroller is connected to external Bluetooth and 
GPRS modules through which it communicates with remote devices.



7

Java 

The software application run by remote devices was developed in Java. Java was chosen for its 
platform independence and the number of devices which currently support it. As it is platform 
independent a single application was developed which runs on any Java enabled device. Java is 
available  for  free  on  desktop  computers  and  laptops,  and  is  implemented  on  many modern 
mobile phones and PDAs
Other  platform  independent  languages  such  as  the  Microsoft  .NET platform  are  available, 
however Java is the most widespread. 



8

3 Hardware and Software  
Once these technologies had been chosen the associated  hardware and software was required. 
This included a microcontroller, Bluetooth and GPRS modules and software packages. 

3.1 Hardware  

This section gives information about the hardware used during the development and construction 
of the wireless telemetry system.  

Microcontroller

The  microcontroller  used  was  the  Microchip  PIC16F877  along  with  the  PIC  Millennium 
Development Board and PicStart Plus programmer. The PIC16F877 is a widely available 8-bit 
micro controller with an ADC for sampling the incoming signal and a Universal Asynchronous 
Receiver Transmitter (USART) for serial communication with the external Bluetooth module 
and GPRS modem. The development board provided a keypad, LCD, LEDs and a MAX232 chip 
to convert voltage levels for RS232 communication. 
For more information on all these products please visit Microchips website [3]. 

Bluetooth Module

To enable the PIC to communicate via Bluetooth a Parani ESD200 Bluetooth module was used. 
This module was chosen because of its low power consumption, small form factor, simplicity of 
use and personal recommendation. The PIC communicates with this module through TTL level 
RS232 communication. The Parani ESD200 is configured through a PC wizard or by the PIC 
itself using AT commands. Once a Bluetooth connection has been established this module acts as 
a  virtual  serial  port,  sending  and  receiving  raw  bytes  to  and  from the  PIC  and  connected 
Bluetooth device. 
For more information on the Parani ESD200 please visit [4].  

GPRS Modem

The Telit TER-GX101S modem was used to enable GPRS internet connectivity for the PIC. It is 
a  GPRS/GSM modem which can also make phone calls  and send SMS messages.  Like the 
Parani  ESD  the  Telit  TER-GX101S  is  configured  through  a  PC  wizard  or  by  using  AT 
commands and acts as a virtual serial port once a GPRS connection has been established. 
The Telit TER-GX101S modem is not  ideal for this purpose. It is a relatively large unit, requires 
an external aerial and a mains power supply. Therefore, although this modem was suitable for 
development, a GPRS module would be used for production of the telemetry unit rather than a 
GPRS modem. An ideal GPRS module would be one of the small, battery powered AarLogic 
C01/3 / C05/3 modules.
For more information on the AarLogic C01/3 and C05/3 GPRS modules please visit [5]. 
The Telit TER-GX101S modem is no longer in production, however for more information on its 
successor, the Telit TER-GX104 please visit [6]. 



9

Remote device

During development a single remote device was used. This was a Sony Ericsson K800i mobile 
phone. This is a standard mobile phone providing many common features including all of those 
required for this project – Bluetooth and GPRS Internet connectivity and Java ME support. 
For more information on the Sony Ericsson K800i please visit the Sony Ericsson website [7]. 

3.2 Software  

This section gives information on the programming languages and software packages used to 
develop the telemetry system.

PIC Programming

The  PIC was  programmed in  C.  The  C  programming  language  was  chosen  over  assembly 
language due to its ease of development and programming clarity. The CCS C compiler was 
used along with Microchip MPLAB IDE. All source code was written using Notepad++, a free 
source code editor, for its features including syntax highlighting and tabbed document browsing.
For more information on and downloads for MPLAB, CCS and Notepad++ please visit [3], [8] 
and [9] respectively. 

Remote Device Programming

A remote device can communicate with telemetry unit through a Java application. The remote 
device used for this project was a mobile phone (Sony K800i). Therefore the Java ME CLDC 1.1 
MIDP 2.0 platform was used. This platform is available on most modern mobile phones and 
includes the wireless API required.  Earlier  Java ME platforms may also run the application, 
however this is not guaranteed. Java SE platforms (the Java platform run on desktop computers) 
require a separate GUI to be developed before the application will run. For more information on 
this please see chapter 7.
To help develop the application Netbeans IDE was used along with the Java Wireless Tool Kit 
(WTK). This enables applications to be developed, simulated and debugged on a PC without 
having to run the application on a mobile device. The Sony Ericsson SDK was also used on 
occasions.
To visually enhance the Java application J2ME Polish was used. This required the writing of 
Cascading Style Sheets (CSS) which are commonly used in website design. More information on 
J2ME Polish can be found in chapter 7.
For more information on Netbeans and J2ME Polish please visit [10] and [11].



10

4 Basic Connectivity  
Once the hardware and software had been chosen, development began on the wireless telemetry 
system. This section covers the basics of creating a connection with, and sending data between, 
the telemetry unit and a remote device. 
Once basic connectivity had been established a simple messenger program was developed which 
is documented at the end of this chapter (section 4.3). 

4.1 Bluetooth  

A Bluetooth connection consists of both a client and a server. In the case of this project the 
telemetry unit acts as the server and a remote device as a client.

Telemetry Unit (acting as a server)

The Parani-ESD Bluetooth module used for the telemetry unit can be in one of 4 modes:
● Mode0 – waiting for AT commands. Bluetooth is not active. Mode used for configuring 

the  Parani-ESD.
● Mode1 – tries to connect to the last connected Bluetooth device.
● Mode2 – waiting for a connection form the last connected Bluetooth device.
● Mode3 – waiting for a connection from any Bluetooth device. 

To act as a server the Parani-ESD is operated in mode3. In this mode it is discoverable by any 
device, unlike mode2 which only allows a single device to connect. 
Once  a  client  is  connected  to  the  Parani-ESD  it  informs  the  PIC  by sending  the  message 
“CONNECT”. It then becomes a virtual serial connection, passing raw data to and from the PIC 
and connected device over the Bluetooth connection.  This continues until  the remote device 
disconnects,  upon which  the  PIC is  informed by a  “DISCONNECT” message.  The  module 
automatically disconnects if the device goes out of range. 
Messages to and from the PIC and Parani ESD are sent through the same RS232 interface as 
data from a remote device. Therefore these messages must be processed correctly, otherwise data 
or messages may be misinterpreted. The Parani ESD begins and ends each message with two 
command characters to allow messages to be distinguish from data. 

Remote Device (acting as a client)

This sub-section describes how to make a Bluetooth connection in Java ME. All classes and 
methods described here are provided by the Java ME implementation. 
The Java client side is considerably more complicated than telemetry unit server. Setting up the 
Bluetooth connection is achieved in three stages. These are:

● Device discovery
● Service search
● Service connection

A client device sends out a request to discover all available Bluetooth devices. Once a device has 
been discovered it can then be searched to determine the services it supports. There are a large 
range of Bluetooth services available but the service used by the Parani-ESD is the Bluetooth 
Serial Port Service. This service which allows the transfer of serial data between two devices. 



11

Each service on any Bluetooth device has a universally unique identifier (UUID). This UUID 
can be used to construct a URL from which a connection can be created, in a similar fashion to 
creating a connection over the internet.Figure 2 Shows the URL of the serial port service of the 
Bluetooth dongle used during development. 

btspp://00a09611fe32 

Figure 2: Bluetooth URL

The protocol is btspp and 00a09611fe32 is the UUID. Once the connection has been made data 
can be sent freely between the two devices. 
The Java package used to access the Bluetooth API is javax.bluetooth. Figure 3 illustrates the 
classes used to establish a Bluetooth connection.

LocalDevice 

The LocalDevice class is a singleton (only ever one instance of the class) of which a reference 
is obtained by calling  LocalDevice.getLocalDevice(). The  LocalDevice instance provides 
methods to return the devices current Bluetooth settings (such as  getFriendlyName()) and a 
method  to  return  the  DiscoveryAgent instance.  It  is  the  DiscoveryAgent which  provides 
methods to search for devices and services. 

DiscoveryAgent

The  DiscoveryAgent is  also  a  singleton,  of  which  a  reference  is  returned  by  calling  the 
LocalDevice.getDiscoveryAgent() method. To begin device discovery (search for Bluetooth 
devices) a call must be made to the DiscoveryAgent method startInquiry(..).

startInquiry(int accessCode, DiscoveryListener listener) 

The accessCode argument should be DiscoveryAgent.GIAC which is a general inquiry access 
code which inquires about all devices. Other access codes can be used to discover only specific 
types of device.  Listener is the instance of a class that implements the  DiscoveryListener 
interface to which callbacks are made. Once a device has been discovered its services can be 
searched using the DiscoveryAgent searchServices(..) method.

Figure 3: Classes used to establish a Bluetooth connection. [12]

1 = one instance

* = many instances



12

searchServices(int[] attrSet, UUID[] uuidSet, RemoteDevice btDev, 
DiscoveryListener listener) 

The uuidSet argument is an array of UUIDs for the services of  interest, in this case the UUID 
for the serial port profile. BtDev is the device to search and listener is the same as before. Both 
of these methods require considerable computation time, so rather than blocking they return 
instantly  and  communicate  through  call  back  routines  defined  in  the  DiscoveryListener 
interface  implemented by listener.

DiscoveryListener

DiscoveryListener is an interface which defines the four call back routines shown in Figure 4.

deviceDiscovered(RemoteDevice btDevice, DeviceClass cod)           

inquiryCompleted(int discType)           

servicesDiscovered(int transID, ServiceRecord[] servRecord)

serviceSearchCompleted(int transID, int respCode) 

Figure 4: DiscoveryListener interface

These routines must be implemented by any class which implements the  DiscoveryListener 
interface. They are called each time a device/service is discovered and when the device/service 
search has completed. 

RemoteDevice

For  every  device  found  a  callback  to  deviceDiscovered(..) is  made,  providing  a 
RemoteDevice instance representing the device found. This class provides methods to query the 
device for information such as its address, friendly name, authorisation and authentication. To 
discover which services the device offers a call must be made to the DiscoveryAgent method 
searchServices() with the RemoteDevice instance as one of the arguments.

ServiceRecord 

Once searchServices() has been called the assigned listener will receiver a sequence of calls 
to  servicesDiscovered() followed by a single call to  serviceSearchCompleted(). Calls to 
servicesDiscovered() provide  ServiceRecord instances  for  each  service  found.  The 
ServiceRecord class provides the method getConnectionURL() which returns the URL of the 
service which can then be connected to using the  javax.microedition.io.Connector class. 
The lines of code in Figure 5 connect to the URL specified in the string url and open both input 
and output streams which can be read from and written to accordingly.

StreamConnection conn = (StreamConnection) Connector.open(url);

InputStream is = conn.openInputStream();

OutputStream os = conn.openOutputStream();

Figure 5: Code to connect to a URL and open input and output streams

For more information on the Java Bluetooth APIs please visit [13].



13

4.2 GPRS  

An Internet  connection  requires  a  server  to  listen  for  incoming connections  and a  client  to 
connect to the server. Ideally the telemetry unit would act as a server waiting for a connection 
from a remote device.  This  required the telemetry unit  to  a  open a  server  side socket  on a 
designated port and any device could then connect to that socket. However several unforeseen 
problems prevented this. 

GPRS connection problems

Whenever the telemetry unit enables GPRS it is assigned a different IP address. This meant that 
the remote device did not know what IP address to connect to. The same problem occurs when 
the mobile phone enables GPRS. This meant that neither the telemetry unit or remote device 
knew the others IP address, making communication impossible. 
Originally it was thought that if the remote device or telemetry unit could open up a server side 
socket  and then send its  IP address in a  SMS message then the other  could connect  to this 
address. Unfortunately there was another problem with this solution – each device could only 
retrieve its internal IP address, one that is not globally addressable (cannot be connected to). 
 It was evident that direct data transfer over GPRS was not going to be simple, if at all possible. 
The problem was equivalent to a hypothetical situation of two friends wanting to call each other, 
but neither knowing the others number, or even in fact their own.  

They can send SMS messages to each other, however this is both very slow and costly, making it 
an unsuitable alternative.  
The final solution was to introduce a third party – a relay server. Using the situation from before, 
this is a third friend whom both friends can ring and who will then pass on messages between 
them. This friend always has the same number, so it does not matter that the other friends do not 
know their own numbers. 

Relay Server

The relay server opens a socket and waits until both the telemetry unit and a remote device have 
connected to it before directly relaying data between them. Neither the telemetry unit or remote 
device are aware of its presence. It can also be used to monitor Internet access, and keep records 
of any data transferred. The relay server must be hosted on the Internet. This can be done by 
purchasing a domain and leasing space on a web server, however this is costly. A free alternative 
is to use the services of DynDNS.

Figure 6: How do you ring a friend when you don't 
know their number?



14

DynDNS offer free domains, and more importantly a free domain name service which maps a 
domain to a computer. This means that the server can be run on any computer which has internet 
access, removing the need to lease a dedicated web server. 
Most internet  users  are  assigned a dynamic  IP address  from their  ISP. This IP address  may 
change  which  would  cause  the  domain  name  to  no  longer  map  to  the  required  computer. 
However DynDNS provide a free program which runs on any computer (and quite a few routers) 
to ensure that  the domain name is  always mapped to the correct  computer,  regardless of its 
changing IP address. For more information on DynDNS please visit [14].

Telemetry Unit

The Telit GPRS/GSM modem accepts AT commands which are terminated by a carriage return 
character.  The  modem can be set  to  respond with either  verbose  responses  such as  'OK'  or 
numeric responses. It was found that numeric responses were easier to interpret than verbose 
responses. Figure 7 shows the numeric response codes and their interpretation.

Response Code Interpretation

0 Command Successful

1 Connected

2 N/A (ring)

3 Disconnected

4 Command Error

5 N/A (no dial tone)

6 N/A (busy)

7 N/A (no answer)

Figure 7: Telit modem response codes

The Telit modem takes considerable time to processes even simple commands so a delay of 
500ms was used in between all commands sent. 

Making a GPRS connection

To connect to the relay server the Telit modem must connect to specified port on the server. Two 
commands are required to achieve this, AT#SKTSET and AT#SKTOP. The first sets the properties of 
the socket.

AT#SKTSET=0,21000,"WWW.DANNY.GOTDNS.COM"

This  socket  is  set  to  be  a  TCP  socket,  which  will  connect  to  port  21000  on 
www.danny.gotdns.com.  The  AT#SKTOP command  then  opens  the  socket  and  starts  the 
connection procedure. 

AT#SKTOP

The default packet size, socket time-out and other socket properties can be set using commands 
which are specified in the Telit user manual available at [6].

http://WWW.DANNY.GOTDNS.COM/


15

Sending an SMS

To send an SMS using the Telit modem SMS messaging must be enabled using the command

AT+CNMI=2,1

SMS must then be set to 'Text Mode'.

AT+CMGF=1

The pseudo code to then send the SMS “Hello” to 07121212121 is shown in Figure 8.

Send : AT+CMGS= 07121212121

Wait to receive the '>' character

Send : Hello

Send : CRTL+Z (decimal 26) (end of message character)

Wait for message sent confirmation

Figure 8: Pseudo code to send an SMS using the Telit GPRS modem

Remote Device (Client)

The remote device used was a mobile phone which can also send SMS messages and connects to 
the relay server over GPRS.

Making a GPRS connection

Connecting to the relay server is very similar to connecting to a Bluetooth device, however the 
URL is previously known so no device or service discovery is required. Once a connection has 
been establish an InputStream and an OutputStream can be opened in exactly the same way as 
they are for a Bluetooth connection. The Java code in Figure 9 shows how to open a socket on 
port 21000 of www.danny.gotdns.com.

String url = "socket://www.danny.gotdns.com:21000";

StreamConnection conn = (StreamConnection) Connector.open(url);

InputStream is = conn.openInputStream();

OutputStream os = conn.openOutputStream();

Figure 9: How to open a socket in Java

Sending an SMS

To send an SMS a URL is required. This URL is “sms://” followed by the recipients phone 
number. Figure 10 shows how to send a SMS in Java ME. 

String url = "sms://07121212121" ;

String message = "Hello";

// opens connection

http://www.danny.gotdns.com/


16

MessageConnection conn = (MessageConnection) Connector.open(url);

// prepares text message
TextMessage sms = (TextMessage) 
conn.newMessage(MessageConnection.TEXT_MESSAGE);

// write the message
sms.setPayloadText(message);

// send the sms
conn.send(sms);

Figure 10: How to send an SMS in Java ME

4.3 Simple Messenger Application  

A simple messenger application was developed to test the transfer of data between the telemetry 
unit  and  a  remote  device.  Once  a  connection  is  established  it  appears  identical  to  both  the 
telemetry unit and remote device whether it is a Bluetooth or GPRS connection. Therefore the 
messenger application can be run over either connection, however it was developed and tested 
for a Bluetooth connection to omit the added complexity of developing a relay server at this 
stage.

One-way messenger

The original messenger application allowed the remote device to search for Bluetooth devices 
and connect to them. Once connected to the telemetry unit messages could be written and sent 
over the Bluetooth connection. They were then displayed on the development board LCD. 

Two-way messenger

The  application  was  then  extended  by  turning  the  development  board  keypad  into  a  fully 
functioning keypad capable of typing standard alpha-numeric characters (similar to a mobile 
phone keypad). Messages were then typed on the keypad and sent from the telemetry unit to the 
remote device. This added extra complexity as both the telemetry unit and remote device were 
now sending and receiving messages simultaneously. This required the PIC to use interrupts to 
receive data and the remote device application to have a separate thread for receiving data. 

Sample sending

Once the two way messenger was fully functional the application was extended again. This time 
the telemetry unit sent messages at the same time as sending regular readings from the PICs 
ADC. The ADC and a timer interrupt were used to send readings at a specified time interval. The 
remote device application was also to display both messages and the samples being sent. The 
messages  were  displayed  in  a  main  window  and  samples  in  the  windows  title  bar.  When 
receiving data, messages and samples were differentiated between by using a different header 
byte for each. 

Overall Outcome

Developing this application proved the wireless telemetry system was achievable. Connection 
establishment,  data transfer and signal sampling were all  implemented successfully.  Through 
achieving  this  key  programming  skills  and  routines  were  developed.  These  included  multi 
threading,  use  of  interrupts,  automated  data  processing/buffering,  routines  to  operate  the 
development board keypad and LCD and simple Java ME graphical user interface construction.



17

5 Wireless Telemetry System Specification  
Once basic connectivity and data transfer had been achieved a full specification for the wireless 
telemetry system was produced. This section documents the specification.

5.1 Connectivity  

The telemetry unit supports both Bluetooth and Internet connectivity. This is limited to a single 
Bluetooth  and  a  single  Internet  connection,  however  both  connections  are  supported 
simultaneously. This allows two remote devices to communicate with the telemetry unit at the 
same time. 
Bluetooth connections connect directly to the telemetry unit whereas Internet connections are via 
a relay server. The telemetry unit connects to the server via GPRS. Due to the costs involved 
with GPRS the telemetry unit is not constantly connected to the server. Therefore to initiate an 
internet connection an SMS message is sent to the telemetry unit requesting for it to connect to 
the relay server. This process is displayed graphically in Figure 11.

Figure 11: Process of connecting to the telemetry unit over the Internet

5.2 Functionality  

This  section  describes  the  functionally  of  both  the  telemetry  unit  and  the  remote  device 
application. 

Telemetry Unit

The telemetry unit is able to:
● Sample an incoming signal between 0-5V with 8 bit resolution
● Support sample rates from micro seconds to hours
● Send live samples to all connected devices
● Send samples at a different rate to the sample rate
● Send a warning SMS to a remote device if this signal reaches a pre-defined level (critical 

level) while no device is connected

Telemetry UnitRemote Device

Step 1 – Send 
SMS to TU

Step 2 – Connect 
to relay server

TU receives connection 
request SMS

Relay server

SMS

TU connects 
to server



18

Remote Device

The remote device application is able to:
● Display the value of incoming samples
● Graphically display incoming samples
● Change the telemetry unit sample rate
● Change the rate at which the telemetry unit sends live samples (display rate)
● Change the critical level
● Warn the user if the critical level has been reached
● Change to phone number of the device to which the telemetry unit sends critical level 

warnings
● Change the server address to which it connects
● Change the server address to which the telemetry unit connects
● Change the phone number of the telemetry unit (to which an internet connection request 

SMS is sent)

5.3 Data Transfer  

Data is be transferred in packets. These packets are the same regardless of the connection type. 
Each packet contains one of the following:

● Request for the current value of a setting (RD -> TU)
● Request to change a setting (RD -> TU)
● The current value of a setting (TU -> RD)
● Value of the latest sample (TU -> RD)

When a remote device connects to the telemetry unit it does not know the value of the telemetry 
unit's settings (for example sample rate). Therefore the remote device sends individual requests 
for the value of each setting. The telemetry unit then sends back the value of each setting. The 
remote device can change any setting by sending a request to change the setting along with the 
new value. Once this change has been successful the telemetry unit sends the new value of the 
setting back to the remote device. This is shown graphically in Figure 12.

Figure 12: Requesting and changing the telemetry unit's settings

Sample
rate = 2

Sample
rate = 5

Sample
rate=?

Sample
rate =2

Sample
rate =5

  Request sample rate

Sample rate =2

     Change sample rate to 5

Sample rate = 5

TU Settings RD Settings



19

The remote device assumes that the setting has not been changed unless it receives the updated 
setting. This is to prevent a user from thinking that they have changed a setting when the change 
failed. If more than one device is connected to the telemetry unit then both devices are sent the 
updated setting automatically.

Sending data – Remote Device to Telemetry Unit 

Data sent from a remote device to the telemetry unit is in a packet structure as shown in Figure
13.

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE .....

DATA_HEADER (0xFF) CMD_HEADER CMD_DATA 

Figure 13: Remote device to telemetry unit data packet structure

DATA_HEADER is a single byte of decimal value 255 (hex FF) which informs the telemetry 
unit that this is the start of a valid data packet. This header enables the telemetry unit to separate 
data  sent  from  a  connected  device  to  messages  sent  by  the  Bluetooth  or  GPRS  modules 
themselves (such as a connection or disconnection notification). It also prevents erroneous data 
from  being  interpreted  as  commands,  as  all  commands  must  be  preceded  by  the 
DATA_HEADER.  The  next  byte  is  the  CMD_HEADER.  This  tells  the  telemetry unit  what 
action is required and what (if  any)  data follows.  The command headers used are shown in 
Figure 14.

CMD_HEADER Value Description

HEADER_SAMPLERATE 0x01 Request  for  the  current  sample  rate.  No 
CMD_DATA supplied.

HEADER_DISPLAYRATE   0x02 Request  for  the  current  display  rate.  No 
CMD_DATA supplied.

HEADER_PHONENUMBER   0x03 Request for the phone number stored to which 
alert  messages  are  sent.  No  CMD_DATA 
supplied.

HEADER_CRITICALLEVEL   0x04  Request for the current critical level value. No 
CMD_DATA supplied.

HEADER_SERVERURL 0x05 Request for the URL of the server to which the 
PIC connects when a GPRS connection request 
is received. No CMD_DATA supplied.

HEADER_SET_SAMPLERATE 0xF1 Request  to  change  the  sample  rate. 
CMD_DATA = sample rate. 

HEADER_SET_DISPLAYRATE 0xF2 Request  to  change  the  display  rate. 
CMD_DATA = display rate. 

HEADER_SET_PHONENUMB
ER

0xF3 Request  to  change the  phone number  stored. 
CMD_DATA = phone number.

HEADER_SET_CRITICALLEV
EL  

0xF4 Request  to  change  the  critical  level. 
CMD_DATA = critical level



20

HEADER_SET_SERVERURL 0xF5 Request  to  change  the  server  URL  stored. 
CMD_DATA = server URL.

Figure 14: Data headers

Sending data – Telemetry Unit to Remote Device

Data sent from the telemetry unit to the remote device is wrapped in same packet structure as 
data sent from the remote device to the telemetry unit. 
For SET commands an attempt is made to change the requested setting with the data provided. 
The resulting value of that setting, whether the change has been successful or not, is then sent 
back to the remote device. The command headers used are shown in Figure 15.

CMD_HEADER Value Description

HEADER_SAMPLE  0x0A The  following  CMD_DATA  is  the  latest 
sample

HEADER_SAMPLERATE 0x01 The  following  CMD_DATA  is  the  current 
sample rate.

HEADER_DISPLAYRATE   0x02 The  following  CMD_DATA  is  the  current 
display rate.

HEADER_PHONENUMBER   0x03 The  following  CMD_DATA  is  the  phone 
number stored to which any alert message will 
be sent. 

HEADER_CRITICALLEVEL   0x04  The  following  CMD_DATA  is  the  current 
critical level value.

HEADER_SERVERURL 0x05 The following CMD_DATA is the URL of the 
server to which the PIC will connect to when a 
GPRS connection request has been received.

Figure 15: Data headers



21

6 Programming the Telemetry Unit  
This section goes into detail about the software developed to run on the PIC microcontroller. 
This software implements the functionality described in the previous chapter.

6.1 Object style approach  

The C programming language is a procedural  language. However all code has been developed 
using an object orientated approach. This allows for easily readable and changeable code. It 
helped to reduce potential errors and allowed for each 'class' to be tested separately. 
Classes were constructed using structures, and their associated methods are functions which take 
a pointer to the instance of the class structure as an argument. Figure 16 shows and example of 
the method1(..) method of the myclass class. 

myclass_method1(struct myclass * instance, int agr1, int agr2);

Figure 16: Example of a class method

6.2 Data structures  

For convenience, coding simplicity and to avoid memory leaks two simple data structures were 
developed. These are buffer and circular_buffer.

Buffer

Buffer is a simple  struct containing a pointer to a standard C array and two integers which 
store the size of the buffer (number of bytes allocated in the data array) and the index of the next 
empty byte in the array.  

struct buffer {

BYTE * data;

int size;

int next_in;

} ; 

Figure 17: Buffer structure

These variables should not be accessed directly. Instead a pointer a buffer instance should be 
passed to the specifically defined functions found in D_BUFFER.C. Functionality is provided to 
dynamically allocate and initialise a  buffer, read and write bytes to a  buffer, and query the 
current status and size of a buffer. The buffer API is shown in Figure 18.

struct buffer * buffer_init(struct buffer * buff, unsigned int size);

struct buffer* buffer_from_string(struct buffer * buff, BYTE *string);

BYTE buffer_read_byte(struct buffer * buff, unsigned int byte_num); 

int1 buffer_write_byte(struct buffer *buff, BYTE data);



22

int buffer_write_bytes(struct buffer * buff, BYTE * src, int size);

int buffer_write_string(struct buffer * buff, BYTE * string);

void buffer_clean(struct buffer * buff);

void buffer_reset(struct buffer * buff) ;

int1 buffer_full(struct buffer * buff);

int buffer_space(struct buffer * buff);

void buffer_display_data(struct buffer * buff);

void buffer_display_idata(struct buffer * buff);

Figure 18: Buffer API

More detailed information and the implementation of each of these functions can be found in 
D_BUFFER.C.

Circular_buffer

Circular_buffer is an implementation of a circular buffer with FIFO access. The structure is 
shown in Figure 19.

struct circular_buffer {

BYTE * data;

int size;

int current_size;

BYTE next_in;

BYTE next_out;

int1 full;

int1 empty;

} ;

Figure 19: Circular_buffer structure

As with the buffer structure these variables should not be accessed directly. Similar functions 
are provided for circular_buffer as for buffer. The API is shown in Figure 20.

struct circular_buffer * circular_buffer_init(struct circular_buffer * 
buff, unsigned int size);

int1 circular_buffer_write_byte(struct circular_buffer 
*mycircular_buffer,BYTE data);

BYTE circular_buffer_read_byte(struct circular_buffer * 
mycircular_buffer);

int circular_buffer_read_string(struct circular_buffer * 
mycircular_buffer, BYTE * string);



23

int circular_buffer_read_data(struct circular_buffer * 
mycircular_buffer, BYTE * dest, int size);

int circular_buffer_write_data(struct circular_buffer * 
mycircular_buffer, BYTE * src, int size);

int1 circular_buffer_full(struct circular_buffer * mycircular_buffer);

int1 circular_buffer_empty(struct circular_buffer * 
mycircular_buffer);

int circular_buffer_space(struct circular_buffer * mycircular_buffer);

void circular_buffer_clean(struct circular_buffer * 
my_circular_buffer);

void circular_buffer_display_data(struct circular_buffer * 
mycircular_buffer);

void circular_buffer_display_idata(struct circular_buffer * 
mycircular_buffer);

Figure 20: Circular_buffer API

More detailed information and the implementation of each of these functions can be found in 
D_CIRCULAR_BUFFER.C.
By using these data structures and associated methods data handling and storage responsibilities 
are  separated  from  the  main  program.  This  simplifies  the  main  program  and  eases  code 
alteration.  These  structures  were  tested  separately  to  ensure  their  validity.  This  eased  later 
debugging. 
Both buffer and circular_buffer have been implemented to ensure that memory leaks will 
not occur. An attempt to write too much data to either of these buffers results in the data being 
discarded and notification via function return value.  

6.3 RS232 Communication  

The PIC communicates with the Bluetooth module and GPRS modem via RS232. To enable 
simultaneous  communication  two  RS232  communication  interfaces  were  developed, 
RS232_COMM1 and  RS232_COMM2.  These  can  be  found  in  the  corresponding 
D_RS232_COMM1.C  and  D_RS232_COMM2.C  files.  Both  interfaces  have  identical  API, 
however RS232_COMM1 utilises the PICs USART (a hardware device designed to convert parallel 
data for serial transmission and vice versa) whereas RS232_COMM2 handles serial data by using 
software interrupts. This is less reliable and more processor intensive than using the USART, 
however the PIC16F877 only has one USART. Unfortunately the only PIC models which have 
more than one USART have more than 40 pins and were not compatible with the development 
board or programmer used. 

Receiving data

Both  interfaces  automatically  receive  incoming  data  via  interrupt  routines  and  store  it  in  a 
circular_buffer,  of size defined by  RS232_COMM_BUFFER_SIZE.  Buffered data can then be 
retrieved by using the corresponding rs232_comm_get_byte() function which returns the next 
byte and removes it from the buffer. Rs232_comm_get_byte() returns immediately and should 
not  be  called  without  first  checking  that  new  data  is  available  (eg  using  the 
rs232_comm_data_available() function). If rs232_comm_get_byte() is called when there is 



24

no data available the returned byte is invalid. The buffer should not be accessed directly and if 
the it becomes full then any data received will be discarded until space becomes available.
In many applications the PIC expects more data to arrive over RS232, for example if three digits 
of a phone number had arrived then eight more digits are expected. However the PIC processes 
data faster than it arrives over RS232. This results in the PIC having to wait for the remaining 
data. Rs232_comm_wait_for_data() is a function which will wait indefinitely and only returns 
once data is available. However use of this function is not advised as data may have been lost or 
corrupt and never arrive, resulting in the program stalling indefinitely. 
To solve this problem  rs232_comm_wait_ms_for_data(unsigned long ms) was developed. 
This function returns TRUE immediately if there is already data available in the buffer. If data is 
not available then it waits a maximum of ms milliseconds for data to arrive. If no data arrives by 
the end of this period then it returns FALSE. This prevents the program from waiting indefinitely 
for data.  This function returns  TRUE as soon as data is available and does not wait the time 
specified before returning. 
To  ensure  that  the  receive  buffers  do  not  fill  up  rs232_comm_data_available() is  polled 
regularly and the data processed as soon as possible. 
Functions for both RS232 interfaces were developed to receive a specified number of bytes and 
return them in a buffer structure. A standard time-out is used to receive the bytes. If the time-
out expires then the function returns the number of bytes received.

Sending data

Functions for both interfaces were developed to send a single byte or an entire  buffer over 
RS232. 
To help debug and visualise data being sent over RS232, both interfaces define pins which are 
set high/low (ideal for connecting to LEDs) when data is available and when the receive buffers 
are  full.  These  pins  can  be  changed  by  altering  the  #define statements  at  the  top  of  the 
corresponding .C files. The full API for each communication interface is shown in Figure 21.

int1 rs232_comm1_init();

BYTE rs232_comm1_get_byte();

unsigned int rs232_comm1_get_bytes(struct buffer * buff, unsigned int 
bytes);

int1 rs232_comm1_send_byte(BYTE data);

int1 rs232_comm1_send_buffer(struct buffer * buff);

int1 rs232_comm1_data_available();

void rs232_comm1_wait_for_data();

int1 rs232_comm1_wait_ms_for_data(unsigned long ms);

void rs232_comm1_clear_buffer();

void rs232_comm1_display_data();

void rs232_comm1_display_idata();

Figure 21: Rs232_comm1 interface API



25

More  detailed  information  and  the  implementation  of  these  functions  can  be  found  in 
D_RS232_COMM1.C / D_RS232_COMM2.C. 
Figure 22 shows the flow of data in and out of the PIC via RS232 using these interfaces.

Figure 22: Diagram showing the flow of data in and out of the PIC using the Rs232 interfaces.

6.4 Bluetooth and GPRS  

D_BLUETOOTH.C and D_GPRS.C were developed over the top of the rs232_comm interfaces. 
This section goes into more detail about D_GPRS.C however the same principles apply to the 
functions in D_BLUETOOTH.C

Sending and receiving data

The functions shown in Figure 23 were developed to send to and receive data from the GPRS 
module. 

BYTE gprs_recv_byte()

int gprs_recv_bytes(struct buffer * buff, int num_bytes)

int1 gprs_send_byte(BYTE data)

int1 gprs_send_buffer(struct buffer * buff)

int1 gprs_wait_ms_for_data(unsigned long ms)

Figure 23: GPRS functions

These functions call the relevant rs232_comm2 functions. For example  gprs_send_byte(..) 
calls  rs232_comm2_send_byte(..).  This  makes  the  code  easier  to  read  and  allows  the 
underlying functions could be changed easily. For example the GPRS module could be moved to 
rs232_comm1 by simply changing these functions to the rs232_comm1 equivalents.



26

Initialising the GPRS modem

To ensure that  the GPRS modem is  operational  gprs_init() was  developed.  This  function 
attempts to set the modem correctly and returns TRUE if this was successful. This is called before 
using any of the other gprs functions.

Processing received data

Once data has been received it is analysed to determine if it is data that has been sent to the 
telemetry unit from a remote device or if it is a message from the GPRS modem itself. To do this 
gprs_process() was developed. This function returns a GPRS_RESPONSE enum which indicates 
what  has  been  received.  The  GPRS_RESPONSE enum is  defined in  D_GPRS.C and shown in 
Figure 24.

enum GPRS_RESPONSE {

GPRS_RESPONSE_OK, 
GPRS_RESPONSE_ERROR,
GPRS_CONNECT, 
GPRS_DISCONNECT, 
GPRS_GOT_SMS_PROMPT,
GPRS_SMS_RECEIVED, 
GPRS_SMS_SENT_OK, 
GPRS_DATA_HEADER, 
GPRS_UNKNOWN_HEADER

};

Figure 24: GPRS_RESPONSE enum

By developing the gprs_process() function the GPRS modem can be used without having to 
worry about deciphering messages it may send and separating them from data sent by a remote 
device. This function simply returns GPRS_DATA_HEADER if the data is from a remote device or a 
different  GPRS_RESPONSE depending  on  the  message  sent  by  the  modem.  This  hides  the 
operation of the modem from the main code. The modem can therefore be changed with minimal 
disruption, as only the implementation of this function will need altering.

Connecting to the server

The gprs_connect_to_server() function connects to the relay server. The function itself does 
not return a value and does not state whether the connection was successful or not. The modem 
often takes considerable time to return a connection established or failed message and so it was 
decided that this function should not wait this amount of time before returning. The status of the 
connection is determined by calling gprs_process() once data is available. If the modem has 
successfully  connected  to  the  server  then  GPRS_CONNECT is  returned,  and  if  not  then 
GPRS_DISCONNECT or GPRS_RESPONSE_ERROR is returned. 

Sending an SMS

To send  an  SMS  gprs_send_sms(struct buffer* number, unsigned int level) was 
developed. This function takes two arguments, a buffer containing the phone number to send 
the SMS to and an integer which represents the critical level that the input signal reached. This 
function takes several seconds to return as sending an SMS takes considerable time, however it 
does not wait to determine whether the SMS was sent successfully. As with connecting to the 
server  this  is  determined  by  calling  gprs_process() once  data  is  available  and 



27

GPRS_SMS_SENT_OK is returned if the SMS was sent, and GPRS_RESPONSE_ERROR if not. 

6.5 Sampling  

To sample the ADC two interrupts are used –  INT_TIMER1 and  INT_AD.  INT_TIMER1 is set to 
trigger at the required sample rate, and calls read_adc(ADC_START_ONLY). This function starts 
the analogue to  digital  conversion process  but  returns immediately to prevent  the PIC from 
spending unnecessary time in the INT_TIMER1 interrupt routine. Once the conversion is complete 
the  INT_AD interrupt  is  triggered.  This  routine  retrieves  the  digital  value  and  stores  it 
appropriately.  To ensure  INT_TIMER1 does not flood the ADC with requests this  interrupt is 
disabled in it own routine, and only enabled again once the conversion is complete.

Sample timer

To change how often samples are taken the function  setup_sample_timer(long multiply, 
SAMPLE_TIME time) was written. This accepts a multiplication factor and a SAMPLE_TIME enum. 
This is the time unit to be multiplied to achieve the required sampling interval. The possible time 
units developed are shown in Figure 25.

enum SAMPLE_TIME { 

SAMPLE_TIME_10us, 
SAMPLE_TIME_100us, 
SAMPLE_TIME_1ms, 
SAMPLE_TIME_10ms, 
SAMPLE_TIME_100ms, 
SAMPLE_TIME_1s

};

Figure 25: SAMPLE_TIME enum

The function sets the  INT_TIMER1 interrupt according to the supplied arguments. Setting the 
timer is complex so timer values required for each  SAMPLE_TIME are hard coded.  INT_TIMER1 
triggers at the SAMPLE_TIME set, however read_adc(ADC_START_ONLY) is only called once the 
timer has been triggered multiply times, achieving the required sample time. This means that 
although calling setup_sample_timer(10, SAMPLE_TIME_1ms) and setup_sample_timer(1, 
SAMPLE_TIME_10ms) result  in  samples  being  taken  with  the  same  time  interval, 
setup_sample_timer(1,SAMPLE_TIME_10ms) is  more  efficient  as  INT_TIMER1 is  only 
triggered once per sample rather than ten times. 

Setting TIMER_1

TIMER_1 is a 16 bit counter which triggers INT_TIMER1 once it over flows. The counter can be 
set to increment every one, two, four or eight instruction cycles (one instruction cycle is equal to 
four oscillator periods). The value from which counting begins can also be set. By changing 
these values INT_TIMER1 is triggered at the required time interval. Calculations determining the 
correct TIMER_1 setup values for each SAMPLE_TIME are described in the following paragraph.

oscillator period = 1 /  8MHz = 0.125us

1 instruction cycle = 4 x oscillator period = 0.5us

SAMPLE_TIME_10us = 20 instruction cycles. Therefore let  TIMER_1 count to 20, incrementing 
once every instruction cycle. To make  TIMER_1 overflow after counting to 20 set the timer to 



28

start counting from 65515, as it will overflow after 65535 (maximum for a 16 bit counter) has 
been reached.
SAMPLE_TIME_100us = 200 instruction cycles. This can be achieved by various methods. By 
setting the timer to increment once every 8 instruction cycles, TIMER_1 must count to 25 before 
triggering. Therefore the timer must begin counting at  65510.
SAMPLE_TIME_1ms =  10  x  SAMPLE_TIME_100us.  TIMER1  can  be  setup  the  same  as  before, 
however this time it must count to 250 rather than 25. (Begin counting at 65285).
SAMPLE_TIME_10ms  = 10 x SAMPLE_TIME_1ms. Count to 2500.

SAMPLE_TIME_100ms = 10 x SAMPLE_TIME_10ms. Count to 25000. 

SAMPLE_TIME_1s = 10 x  SAMPLE_TIME_100ms. Count to 250000. However  TIMER_1 can only 
count to  65535 as it is a 16bit counter. Therefore the timer is set to trigger every 0.25s, (count to 
62500), however it waits until it is triggered four times. 

Sending Samples

When a device is connected to the telemetry unit samples are sent for monitoring. There are 
many occasions when it would not be sensible to send every sample. For example if a device is 
connected to the telemetry unit via a slow, expensive GPRS connection and the current sample 
rate was of the order of micro seconds. Not not only would the data transfer be very costly, but 
too slow to handle the volume of data. Therefore another interrupt is used whose timer is set 
separately to the sample rate timer. This is INT_TIMER2. Once this timer is triggered it sets a flag 
indicating that the latest sample should be sent to the connected device. The sample could be 
sent within the interrupt routine itself, however this should be executed as quickly as possible. 
INT_TIMER2 is disabled in its own interrupt routine and only enabled again once the sample has 
been sent. 

Setting TIMER_2

Unlike  TIMER_1,  TIMER_2 is  only  an  8  bit  counter.  TIMER_2 is  set  differently  to  TIMER_1. 
TIMER_2 can increment every one, four or sixteen instruction cycles,  resets once a specified 
value is reached, and the  INT_TIMER2 interrupt routine is only run once the timer has reset a 
given number of times. The timer can reset at any value between 0 and 255 and can reset up to 
16 times before the interrupt is triggered. For information on how the timer is setup for each 
SAMPLE_TIME please refer to D_FIRMWARE.C.

6.6 Main Program  

D_FIRMWARE.C contains the main program which the PIC executes. This program utilises all 
the functions mentioned previously in this chapter. 
When  the  program starts  it  initialises  both  the  Bluetooth  and  GPRS  modules.  Once  these 
modules are initialised it sits in a continuous loop processing any data received and sending 
samples to connected devices. 
Incoming data is first processed by the appropriate gprs_process() or bluetooth_process() 
function.  If  it  is  determined  to  be  data  sent  from  a  remote  device  then  the  function 
process_request_gprs() or  process_request_bluetooth() is  called.  These  functions 
determine what the request is and carry it out. Ideally they would have been combined into one 
function which accepted pointers to send and receive functions (GPRS or Bluetooth). This would 
allow  the  function  to  execute  regardless  of  whether  data  was  being  sent  and  received  via 
Bluetooth or  GPRS. Unfortunately this  could not  be implemented as  CCS does not  support 
pointers to functions.



29

Live samples are sent when the  global_send_sample flag is set.  Samples are automatically 
taken via the INT_TIMER1 interrupt routine as mentioned previously, and global_send_sample 
is set by the INT_TIMER2 interrupt routine when it is time to send a sample. 

If the signal reaches the critical level and no device is connected a warning SMS is sent to the 
phone number set by the remote device application. Only one SMS is sent regardless on the 
number  of  times  the  critical  level  is  reached.  This  prevents  the  possibility  of  hundreds  of 
warning message from being sent. Another SMS is only sent once a remote device has connected 
to the telemetry unit and disconnected again. 
The flow of the program is shown in Figure 26. 

Figure 26: Main program flow.



30

7 Developing the Java Application  
The following section describes the development of the Java application run by a remote device 
to  control  the  telemetry  unit  was  developed.  All  packages,  interfaces,  classes  and  methods 
detailed in this section were written for this project. 

7.1 Java Application Design structure  

When designing the Java application there were two main considerations:
● Portability
● Re-usability

Although Java programs can theoretically run on any platform there are still portability issues. 
Java contains some API which differs between platforms making it incompatible. This is evident 
in the user interface API. Java SE has powerful GUI tools such as Swing, whereas Java ME only 
has very basic GUI capabilities. A program written using the Swing API cannot be ported to Java 
ME and vice versa. Even if this were possible it would not necessarily be advised. The design of 
a mobile phone GUI has to take into account factors such as small screen size and limited user 
input whereas these are irrelevant for desktop applications. 
For this reason programming the Java application was split into three separate packages:

● UserInterface
● DataTransfer
● Connection

This  allows easy development  of platform specific user interfaces without having to rewrite 
either  the  Connection or  DataTransfer packages.  A  graphical  user  interface  has  been 
developed for standard mobile phones (see section 7.4) however a separate party could easily 
develop a user interface for a desktop PC without having to write any low level code as the 
DataTransfer and Connection packages provide API to handle this.  

The  Connection and DataTransfer packages handle connection creation and the transfer of 
data  between  the  remote  device  and  the  telemetry  unit.  Separating  these  tasks  enabled  the 
Connection package to be developed generically, and all program specific code encapsulated 
within the DataTransfer package. This means that the Connection package can be utilised by 
other programs and programmers as its API is not specific to this application. This also allows 
for ease of updating or amending the  Connection package if extra functionality is required. 
Zigbee  connectivity  could  be  enabled  by  simply  adding  an  appropriate  method  to  the 
Connection package without having to alter or understand the DataTransfer package.

The rest of this chapter goes through each of the three packages in more detail.

7.2 Connection Package  

The  Connection package  simplifies  the  complexity  of  creating  Internet  and  Bluetooth 
connections and sending SMS messages. All public methods of the  Connection class return 
immediately and begin the connection process in a new thread. As a result these methods can be 
called freely without having to worry about blocking. Once the connection attempt is complete a 
callback  is  made  to  the  ConnectionstatusListener,returning  an  instance  of 
StreamConnection representing  the  connection  made.  The  ConnectionstatusListener 
interface defines seven callback methods shown in Figure 27.



31

void bluetoothDeviceFound(String name)

void bluetoothDeviceSearchComplete()

void connectionEstablishedBluetooth(StreamConnection conn)

void connectionEstablishedGPRS(StreamConnection conn)

void connectionFailed(String error)

void smsSent()

void smsFailed()

Figure 27: ConnectionStatusListener interface callback routines

These callbacks are explained throughout this section. An instance of a class implementing the 
ConnectionstatusListener interface,  to  which  all  callbacks  are  made,  is  required  by  the 
Connection class constructor. 

Creating a Bluetooth connection

There are two ways to create a Bluetooth connection. If the direct URL is already known then a 
call to bluetoothConnectToUrl(..) attempts to connect to the URL provided.

public boolean bluetoothConnectToUrl(String url) 

However the URL is usually unknown. In this case  bluetoothSearchForDevices() begins a 
search for all available Bluetooth devices.

public boolean bluetoothSearchForDevices() 

Once a device has been discovered a callback is made to bluetoothDeviceFound(..) with the 
friendly name of the device.

public void bluetoothDeviceFound(String name)

Once  all  available  devices  have  been  discovered  a  callback  is  made  to 
bluetoothDeviceSearchComplete().

public void bluetoothDeviceSearchComplete()

A  connection  can  then  be  made  to  one  of  the  discovered  devices  by  calling 
bluetoothConnectToDevice(..) with the friendly name of the device.

public boolean bluetoothConnectToDevice(String name)

If  the  connection  is  successful  then  a  callback  is  made  to 
connectionEstablishedBluetooth(..) providing  a  StreamConnection object  for  the 
connection.

void connectionEstablishedBluetooth(StreamConnection conn)

If  the  connection  attempt  is  unsuccessful  then  an  error  text  is  returned  through  the 



32

connectionFailed(String error) callback routine.

Creating an Internet connection

To  create  an  Internet  connection  a  URL  and  port  number  are  required.  The 
gprsConnectToUrl(..) method attempts to connect to the URL on the specified port.

public boolean gprsConnectToUrl(final String url, final int port)

If the connection is successful then a callback is made to  connectionEstablishedGPRS(..) 
providing a StreamConnection object for the connection.

void connectionEstablishedGPRS(StreamConnection conn)

If  the  connection  attempt  is  unsuccessful  then  an  error  text  is  returned  through  the 
connectionFailed(String error) callback routine.

Sending an SMS

To send an SMS the sendSms(..) method was developed which accepts the phone number and 
message as two String items. 

public void sendSms(final String number, final String message)

A callback will subsequently be made to either smsSent() or smsFailed() depending upon the 
status of the SMS. 

7.3 DataTransfer Package  

This package contains two classes,  DataReceiver and  DataWriter. Together they handle all 
data  transferred between the remote device and the telemetry unit.  These classes  require  an 
InputStream or OutputStream instance which is opened from the StreamConnection returned 
once a successful connection is made by the Connection class. 

There are two main purposes of this package. One of which is to hide the complexity of sending 
and receiving raw bytes behind simple methods and callbacks. The other is to ensure that the 
sending and receiving of data does not cause unexpected program blocks as this will result in a 
non-responsive user interface, freezing the entire  application. Therefore all public methods in 
this package are non-blocking and return immediately. 
Both  DataReciever and  DataSender extend the Java  Thread class. This means that a call to 
start() begins the classes run() method in a new thread. It has been ensured that all methods 
of both classes are thread safe by using  synchronized statements where required. For these 
classes to operate correctly a call to start() is made before calling any other methods. To end 
the thread created the kill() method was developed for each class. 

DataReceiver

This class receives data sent to the device from the telemetry unit. All incoming data is handled 
in the separate thread to prevent blocking. This thread waits to receive data, processes it and then 
a  callback  to  is  made  to  a  relevant  DataReceiverListener method.  The 
DataReceiverListener interface is shown in Figure 28.



33

void connectionConfirmed()

void gotSampleRate(int units, int largeMultiplier, int 
smallMultiplier)

void gotDisplayRate(int units, int largeMultiplier, int 
smallMultiplier)

void gotPhoneNumber(String phoneNumber)

void gotCritialLevel(int criticalLevel)

void gotSample(int sample)

void readTimeout()

void disconnected()

Figure 28: DataReceiverListener interface.

A class which implements this interface must be supplied in the DataReceiver constructor. All 
callbacks are made to the methods implemented by this class. 
DataReceiver buffers  all  received  bytes.  These  bytes  are  then  analysed  according  to  the 
command headers defined in  Header.  Once a valid header has been received  DataReceiver 
waits for the remaining data needed to complete the command. A time-out begins. This ensures 
that any erroneous bytes received do not cause the thread to wait for data that is not being sent. 
This time-out starts a new thread which expires after a set time period. If all the data has not 
been received by the time this thread expires then DataReceiver ignores the current command 
and calls readTimeout(). If all the data is received in time then the time-out is cancelled, data 
processed, and if valid then the associated DataReceiverListener method is called. 

Ideally  the  DataReceiverListener methods  should  be  called  in  new  threads  so  that 
DataReceiver can return to receiving data as soon as possible. However this would require all 
methods in any implementation of the DataReceiverListener interface to be thread safe. For 
simplicity this has only been implemented for the gotSample() method, demonstrating how this 
can be achieved. 
The  DataReceiver thread can be stopped at any point by calling the public  kill() method. 
DataReceiver then closes the InputStream and kill the thread in which it is running.

DataSender

This class sends data to the telemetry unit. Calls to the DataSender public methods enqueue the 
data to be sent and return immediately. The separate thread sends the queued data. 
The public methods of DataSender are shown in Figure 29.

public void setPhoneNumber(String number) 

public void setCritialLevel(int criticalLevel) 

public void setServerUrl(String serverUrl) 

public void setSampleRate(int units, int largeMultiplier, int 
smallMultiplier)

public void setDisplayRate(int units, int largeMultiplier, int 
smallMultiplier)



34

public void requestSampleRate() 

public void requestDisplayRate() 

public void requestPhoneNumber() 

public void requestCritialLevel() 

public void requestServerUrl() 

Figure 29: DataSender public methods.

These methods are split into to categories – set and request. The set methods are for changing the 
telemetry unit settings, and the request methods request for the telemetry unit to send the current 
value of the setting. The telemetry unit automatically sends back the value of a setting if an 
attempt is made to change it. These methods hide the complexity of sending correct headers and 
ensure that all data is formatted correctly. As mentioned previously they return immediately as 
data to send is queued and sent in the separate thread to ensure that no blocking occurs.

7.4 UserInterface Package  

The UserInterface package provides a user interface for the DataTransfer and Connection 
packages.  The  UserInterface package  developed  for  this  project  was  written  for  mobile 
devices  running  Java  ME.  It  hides  DataTransfer and  DataConnection methods  behind 
aesthetically pleasing, easy to use graphical menus, icons text boxes and alerts. 

J2ME Polish

Java  ME provides  several  basic  graphical  user  interface  components.  These  include  simple 
forms, lists, splash screens and alerts. After initial testing it was decided that these components 
were not adequate for what was required. Their appearance cannot be changed, menus cannot be 
renamed, navigation is awkward and overall they are very inflexible. A GUI could have been 
constructed using these components but it would have been far from ideal. 
After research on the Internet, J2ME Polish was discovered. This is a tool suite which provides 
highly flexible user interface components. These components are similar to the ones provided by 
Java ME but are much more flexible, and have a fully customisable appearance which is defined 
in a separate CSS file. This allows programmers to create an interface and designers to make it 
visually appealing without having to change any code. The code must be compiled using the 
J2ME polish compiler which is provided with the suite. 
Currently J2ME Polish is not supported by the Netbeans 'drag and drop' user interface design 
tool which allows users to visually develop user interfaces. Therefore all screens and navigation 
had to be hand coded.
J2ME Polish is available free for non-commercial use  from [11].

Overview

The GUI class implements both the ConnectionstatusListener and DataReceiverListener 
interfaces.  Connections  are  made  using  an  instance  of  Connection.  Data  is  sent  using  a 
DataSender instance  and  data  is  received  through  a  DataReceiver instance.  Its  members 
include all  the user interface components as well  as the copies of the current settings. User 
interface screens are accessed via  getNameOfUIComponet() methods which ensure that the UI 
components are constantly up to date displaying the latest settings received from the telemetry 
unit. 



35

The remainder of this section describes some of the key methods of the GUI class.

Visual Appearance

The visual appearance of all the J2ME Polish user interface elements is defined by a CSS file. 
Different elements support different CSS attributes, however many attributes are supported by 
all elements. CSS styles can be define and used on many elements making it easy to experiment 
with  different  appearances.  For  detailed  information  on  which  CSS attributes  are  supported 
please see the J2ME Polish documentation which can be found at [11]. Among other attributes 
CSS was used to define:

● Element layout
● Text size / font / colour
● Background style and colour
● Border style and colour
● Hover effects
● Screen transitions
● Screen size
● Images

An example of the CSS code used to describe a section of the main menu is shown in Figure 30.

.mainScreen {

padding: 2;
padding-left: 10;
padding-right: 10;

layout: horizontal-expand | horizontal-center | vertical-center;
view-type: dropping;
screen-change-animation: fade;

background {
type: horizontal-stripes;
first-top-color: brightBgColor;
second-top-color: white;
first-bottom-color: blue;
second-bottom-color: black;

}

}

Figure 30: Example CSS code

For a full list of CSS styles used please refer to polish.css in the Remote Device Application 
resources folder. 

Keeping the user updated

To ensure that user is fully up to date with how the telemetry unit is operating a console window 
was developed. The console is a small window which automatically rises up from the bottom of 
the screen displaying information which is relevant to the user.  If multiple items need to be 
displayed on the console then the user can either scroll through them or ignore them by closing 
the console. Typical information displayed on the console is connection status and confirmation 
of a changed setting. This is important if two remote devices are connected to the telemetry unit 



36

as it keeps both users aware of changes the other is making. 

Handling received data

When the DataReceiver instance (class member read) has received data, callbacks are made to 
the GUI class methods which implement the DataReceiverListener interface. 

If the data received is the value of a telemetry unit setting then the member instance which 
represents that setting is updated and the console appears informing the user of this change. 
If the data is the value of the latest sample then this value is displayed in the title bar of the main 
menu, and plotted on the visualiser if it is active. Updating the visualiser is a graphical rendering 
process which can take considerable processor time so is processed in a separate thread. During 
testing it was found that at very high display rates that samples were 'queuing up' to be rendered 
on the visualiser. This meant that the visualisation was no longer real-time. To prevent this if a 
sample is received and the visualiser is currently being rendered then the sample is ignored. 
If the DataReceiver instance encounters an error (such as invalid data, or a read time-out) then 
a message window pops up informing the user of the error.

Sending data

When  the  user  changes  a  setting  using  the  various  input  forms  this  change  is  sent  to  the 
telemetry unit  through the  DataSender instance  (write).  The  setting  does  not  immediately 
change on the GUI just in case the change is unsuccessful. The GUI changes once the telemetry 
unit has confirmed the changed setting. The user is informed of this through the console.  

Visualiser

Development began on a visualiser to display incoming samples in the style of an oscilloscope 
display before J2ME Polish was discovered. This visualiser was written using low level API, 
coding at a pixel level. The visualiser automatically adjusted to different device screen sizes, 
enabled zoom functions and resolution, time scale and axis labels could all be changed. However 
this visualiser was still in the early stages of development when J2ME Polish was discovered 
and  time  did  not  permit  to  continue  development.  This  visualiser  can  still  be  accessed  by 
clicking  'Full  Screen'  however  it  contains  many  bugs  and  much  of  the  functionality  is 
unavailable. The source code is available within the UserInterface package. 

J2ME Polish provides a ChartItem class. This class is used to display numerical data in a visual 
form of bar charts, pie charts or line graphs. This class was created by J2ME Polish to display 
static  data,  however  by constantly changing the data  displayed by the chart  appears  like an 
oscilloscope display. When the device receives samples they are held in a shift register, with 
each incoming sample being entered at one end and the oldest sample being remove from the 
other. 
The shift register is then plotted as a line graph. As more samples are received the previous 
samples shift through the register, with the graph replotted after each sample received. The graph 
appears to show the continuous flow of a signal. This solution is much simpler than the previous 
visualiser,  however  it  is  less  flexible.  Despite  this  it  was  decided  that  it  was  adequate  and 
development of the other visualiser was put on hold.
If the signal goes above the critical level then the user is informed by exclamation marks in the 
title bar, and the displayed signal changes colour from blue to red. 



37

7.5 Data flow diagram  

Figure 31 shows the communication flow between the end user and the classes developed for 
this application. The thin black arrows represent methods being invoked. 

Figure 31: Flow of data in the remote device application



38

8 The Relay Server application  
To enable access to the the telemetry over the Internet a relay server was developed. The relay 
server must be run on a desktop computer or laptop with a permanent internet connection. The 
relay server waits for two connections on a specified port and then relays data between the two. 
Once either connection closes the relay server closes the remaining connection, and waits for 
another two connections. 
The relay server was also programmed in Java, and is contained in the RelayServer package.

8.1 RelayServer package  

The  RelayServer package contains  the  SocketRelay and  Sever classes and  Serverstatus 
interface. Each of these are described in more detail throughout this section. 

SocketRelay

The  SocketRelay class relays  data between two sockets,  provided in its  constructor.  It  is  a 
Runnable class as it must be run in its own thread. Two instances of SocketRelay are required 
to construct a fully functional relay because each instance relays data in a single direction – the 
output of one socket to the input of another.

Figure 32: Diagram showing how the SocketRelay class relays data.

 

Each relay sits in an infinite loop relaying data until it detects that one of the sockets has closed. 
It  then  informs  the  Server instance  (to  which  a  reference  was  given  in  the  SocketRelay 
constructor) that the relay has closed before shutting down all activity. 

Server

The  Server class is the main class in the  RelayServer package. The  Server class opens a 
server  side  socket  on  the  designated  port.  It  waits  for  connections  on  that  port.  Once  one 
connection has been established it continues to listen for another connection. Once a second 
connection has been established a check is  made to ensure the first  connection is  still  alive 
before creating two instance of SocketRelay to relay the data. While data is being relayed no 
more connections are accepted. Once the relay has shut down all sockets and connections are 
closed  before  restarting  the  server,  listening  for  the  the  next  two  connections.  The  public 
methods shown in Figure 33 were developed to control the server.

public void setPort(int portnum);

public void startServer();

public void stopServer();

So
ck

et
 1 IN

OUT

IN

So
ck

et
 2

OUT

SocketRelay

SocketRelay



39

public String getClient1IP();

public String getClient2IP();

Figure 33: Methods developed to control the server.

ServerStatus

Serverstatus is an interface defined to enable the  Server class to send information updates 
about the current status of the server via call back routines. The call backs defined are shown in 
Figure 34. 

    public void client1Conneted(boolean status);

    public void client2Conneted(boolean status);

    public void serverRunning(boolean status);

    public void relayActive(boolean status);

    public void writeBytesToConsole(byte[] bytes, int length);    

    public void writeStringToConsole(String text);

Figure 34: Server status call back routines

These methods are called whenever there is a change to the status of the server. This enables 
monitoring of server activity and any data relayed over the server. The instance of a class which 
implements the Serverstatus interface is passed in the Server class constructor. 

ServerVisual

ServerVisual is an example of a GUI for the RelayServer,implementing the ServerVisual 
interface. It enables the user to choose on which port the server should be run, as well as the 
option to start and stop the server. It displays the IP address of any connected clients, whether the 
relay is currently active as well as displaying any data that has been relayed.

Figure 35: A screen shot of the relay server application



40

9 Telemetry System Data Flow  

Fig 36: The overall flow of data through the entire telemetry system developed. Please refer to the 
relevant sections in chapters 7 and 8 for more information



41

10 Testing  
Testing was split into three stages – telemetry unit testing, remote device application testing and 
overall system testing.

10.1 Telemetry Unit testing  

As an object orientated approach was taken when programming the telemetry unit each class was 
tested individually to ensure its validity. 

Data Structures

The first classes to be tested were the buffer and circular_buffer classes. This ensured that 
there were no memory leaks and data was stored and retrieved from the buffers correctly. Once 
these classes had been tested the RS232 interfaces were tested.

RS232 Interfaces

The RS232 interfaces were tested by sending bytes to and from a computer to the telemetry unit 
via an RS232 cable. These bytes were then displayed on the development board LCD and cross 
checked.  Many different  scenarios  such  as  attempting  to  overflow the  receive  buffers  were 
tested.

Bluetooth and GPRS

Once  the  operation  of  the  RS232  interfaces  had  been  confirmed  the  Bluetooth  and  GPRS 
functions  were  tested  by  sending  commands  to  the  Bluetooth  module  and  GPRS  modem 
respectively. The responses were then displayed on the development board LCD. The operation 
of the actual Bluetooth module and GPRS modem was first confirmed by connecting them to, 
and operating them from a computer. 

Sample and Display timers

The timing of the sample and display timers was tested by changing the state of an output pin 
each time the interrupt was triggered. This output was then viewed on an oscilloscope to ensure 
the correct timing was being achieved.  

10.2 Remote Device application testing  

The remote device application was tested by creating a program that simulated the telemetry 
unit. This program was written in Java for a desktop computer. The program interpreted data and 
gave  the  same responses  as  way the  telemetry unit  would.  This  program had the  ability to 
display exactly what data was being sent and received, allowing accurate debugging. 
The program was used to test the remote device application when samples were being sent at 
very high rate. This was crucial in ensuring that the application could handle such speeds. 

10.3 Overall system testing  

Once both the telemetry unit and remote device application had been tested individually the 
overall system was tested. This proved very helpful in fine tuning the telemetry unit software. 
When two devices  were  connected  and a  high  display rate  was  used  it  was  found that  the 
telemetry unit was prone to corrupting data and becoming stuck in infinite loops while sending / 



42

receiving data.. This was prevented by refraining from using time consuming LCD statements., 
prioritising interrupts and disabling certain interrupts at appropriate times.



43

11 Telemetry System User Guide  
This guide explains how to use the remote device Java application.

11.1 Getting Started  

The telemetry unit control application is a Java application designed to control the telemetry 
unit. It enables live data analysis and full configuration of the telemetry unit.

Requirements

Any Bluetooth or GPRS enabled device supporting the Java ME CLDC 1.1 MIDP 2.0 profile or 
higher. 

Installation

Download the application  .jar  and  .jad files  to  the  required device  via  the  most  convenient 
method, for example using Bluetooth or via a USB cable. Run the .jad file on the device and the 
application  will  be  installed  automatically.  To  run  the  application  locate  where  it  has  been 
installed (usually in 'Games' or 'Applications') and click on the relevant icon. 

Navigation

The application is easy to navigate, just use the default navigation keys on the device you are 
using. Options and menus are clearly displayed on screen, however more options for the current 
screen can often be accessed by clicking 'Menu'.

11.2 Using the application  

Once the application has been launched the the main menu screen appears. This presents six 
options as shown in Figure 37.

Connect Visualiser TU Options TU Settings Help Quit

Figure 37: Main menu options

The first  for  options  are  explained  in  more  detail  throughout  this  section.  The  Help option 
displays  a  brief  explanation  of  how  to  use  this  application  and  the  Quit  option  exits  the 
application.

Connection Menu (Connecting to the telemetry unit )

Once selected this takes you to the connection screen. From here you can choose how to connect 
to the telemetry unit. The connection types currently supported are Bluetooth and GPRS. The 
telemetry unit can support a single Bluetooth and a single GPRS connection simultaneously. 
A connection demonstration is shown in Figure 38 on page 46.



44

Bluetooth

The application searches for all visible Bluetooth devices within range. Please be aware that the 
range of the telemetry unit is approximately 10m however obstructions such as walls may reduce 
this. Once all devices have been found (this will take a few seconds) a list is presented from 
which the telemetry unit can be selected. If the telemetry unit is not found then please check that 
you are within range of the telemetry unit,  the device running the application has Bluetooth 
switched  on  and  that  this  application  has  permission  to  access  local  connectivity.  Once  a 
successful connection has been made you are automatically re-directed to the main menu screen. 
If the connection fails an alert is displayed with the corresponding error message. 
If possible connecting via Bluetooth is recommended over GPRS due to higher reliability, higher 
transfer speeds and free data transfer.

GPRS

A GPRS connection is made in two stages. An SMS is sent to tell the telemetry unit to connect to 
the server. Once this SMS has been sent the device itself connects to the server. Please be aware 
that there are costs involved in both sending and receiving data over GPRS and sending SMS 
messages.  Please  contact  your  service  provider  for  pricing  information.  Once  a  successful 
connection has been made an you are automatically re-directed to the main menu screen. If the 
connection fails an alert is displayed with the corresponding error message. If the connection 
fails please ensure that:

● Both the device and telemetry unit have sufficient credit.
● Both the device and telemetry unit are connecting to the correct server address.
● The device has the correct phone number of the telemetry unit 
● The server is currently running and not blocked by any firewalls
● The application has permission to send SMS messages and GPRS data

To  change  the  server  address  to  which  the  device  connects  and  the  phone  number  of  the 
telemetry unit please scroll across to GPRS and then click on the 'Settings' option. 

Visualiser

The visualiser plots samples sent by the telemetry unit. This can be used to analyse the signal 
sampled by the telemetry unit. The visualiser displays up to the last 50 samples received with a 
scale of 0-5V. The number of samples displayed at once can be altered through the 'Resolution' 
menu.  This  feature  helps  to  maximise  use  of  the  screen.  The  rate  which  the  telemetry unit 
samples the waveform and the rate at which samples are sent to the device can be changed via 
the 'Options' menu. At the bottom of the visualisation the duration of the signal displayed is 
shown. 
If the signal rises above the critical level then the signal changes from blue to red. The critical 
level can be changed via the main menu 'Options' menu.
A demonstration of the visualiser can be found on page 47.

Telemetry Unit Options

The options menu allows you to change to the telemetry unit  s  sampling and data  analysis 
options. The sample rate, display rate and critical level can all be changed. Once a setting has 
been  changed  it  is  not  updated  immediately  on  the  application.  The  application  waits  for 
confirmation from the telemetry unit to confirm the change. A console window is shown once 
the changed setting has been confirmed. 



45

An example of how to change a telemetry unit option is shown in Figure 41 on page 48.

Sample rate

The sample rate is how often the telemetry unit samples the incoming signal. This is changed by 
altering the three sliders presented. The first represents the time unit to be used, and the second 
two sliders are multiplied together to determine the number of this time unit to delay between 
each sample. There are over one hundred sample rates to choose from, ranging from 1us to 900 
minutes. 

Display rate

The display rate is how often the telemetry unit sends a sample to connected devices. Each time 
a sample is received its value is displayed in the main menu title bar and graphically in the 
visualiser if it is active. The display rate can be changed in the same manner as the sample rate.
Please note that due to the speed restrictions and expense of data transfer over GPRS if the 
display rate is set below 100ms a device connected via GPRS will not be sent any samples. 

Critical Level

The critical level is the level which the incoming signal should never exceed, and if this happens 
immediate notification is required. The critical level can be set at any value between 0 – 256, 
with 0 representing 0V, 255 5V and 256 infinity (no critical level). If the critical level is reached 
you are notified by exclamation marks appearing on the main menu title bar. If no device is 
connected to the telemetry unit and the critical level is reached then a SMS message is sent by 
the telemetry unit to the phone number specified in the telemetry unit options. 

Phone number

If the input signal reaches the critical level and no device is connected the telemetry unit will 
sends a warning SMS to this number.
Please note that only one SMS is sent, even if the input signal continues to stay above the critical 
level. This is to prevent the possibility of hundreds of SMS messages being sent. A SMS is only 
sent again once a device has successfully connected to and disconnected from the telemetry unit.

Remote Device Settings

The settings menu allows you to change the remote device connectivity settings.
An example of how to change a setting is shown in Figure 40 on page 47.

Phone number

This is the phone number of the telemetry unit. A SMS is sent to this number requesting the 
telemetry unit  to connect  to  the relay server before the remote device connects to the relay 
server.

Server address

This is the address the remote device connects to when a GPRS connection is requested.



46

Creating a Bluetooth connection

Choose 'Connect' From the Main 
Menu screen

Select 'Bluetooth' and click to 
proceed

Wait while devices are found

Choose the device to connect Wait while a connection is made A connection has now been 
established

Figure 38: Bluetooth connection demonstration



47

Visualiser

Demonstration of the Visualiser displaying a signal. These screen shots were taken just a few 
samples apart. 

Figure 39: Demonstration of the visualiser

Changing a device setting

Choose the 'Settings' option for 
the Main Menu

Choose the setting to change 
and press edit

Change the setting and press 
save

Figure 40: Demonstration of changing a device setting



48

Demonstration changing a Telemetry Unit option

Select 'Options' from the Main 
Menu

The Options menu is then 
presented

Choose the option to change 
and click Options->Edit

Change the option as required 
and click save

Once the telemetry unit has 
successfully changed the option 

a notification is shown

The setting has now been 
changed

Figure 41: Demonstration of changing a telemetry unit option



49

12 Project Conclusion  
The project has been a complete success. Development of the Wireless Telemetry System has 
exceeded all expectations and proved to be both an enjoyable and education experience.

12.1 Skills development  

Whilst developing the wireless telemetry system many skills were acquired. They include:
● Java programming
● C programming
● Server programming
● Multi threading
● Interrupt handling
● Graphical user interface development
● CSS style sheet creation
● Researching and experimenting with new technologies

Technical skills and knowledge used throughout the project ensured the success of the system 
and provided  innovative  solutions  to  problems encountered;  such as  the  creation  of  a  relay 
server. 

12.2 Wireless Telemetry System development  

The  system developed  is  accessible  by any device  with  Bluetooth  connectivity,  an  internet 
connection or GPRS connectivity from anywhere in the world. It is fully operational and very 
reliable. The remote device application is user friendly and has a graphical user interface which 
looks more professional than a lot of mobile Java applications currently available. The system is 
very flexible allows users full control of all settings. 
Both  the  PIC  software  and  Java  application  have  been  developed  to  allow  extensions  and 
improvements.  The  Java  application  is  written  so  new  user  interfaces  and  connection 
technologies can be developed by third parties who are not required to understand the operation 
of the system at a low level. 
The code provided is highly reusable and designed to be utilised by other programmers. The 
Java Connection package developed was used by a fellow student to create a Java application to 
transfer data over Bluetooth. This helped them to produce a successful final year project.
Through  internet  research  no  similar  systems  were  found  without  spending  a  considerable 
amount of money.  With the extra features described in the appendix this system could become a 
marketable product.



50

13 Appendix  

13.1 Project Extension (Extra Features)  

There are several features which could be added to improve the wireless telemetry system. These 
include:

● Attaching storage so samples can be saved for later analysis.
● Implementing a control interface so that a signal can be analysed and appropriate control 

action could then be applied by the remote device.
● Adding security to the system

These features could be implemented relatively easily. An SD card module could be attached to 
the telemetry unit allowing samples to be written to an SD card. This SD card could then be 
removed and data transferred to a computer, or the data could be sent via Bluetooth or GPRS if 
required. 
A interface could be implemented on the telemetry unit to send control signals by simply raising 
the voltage on set pins or via RS232 communication. Commands could then be sent from the 
remote device and relayed on to control equipment by the telemetry unit. This would require 
adding functionality similar to the simple messenger application which passed messages from a 
remote device onto an LCD display.

13.2 Project Construction  

Before the telemetry system can be used a simple PCB needs designing for the telemetry unit. 
Currently the PIC and Bluetooth module are powered via the development  board.  The PCB 
would also need to house a battery as well as the PIC and Bluetooth and GPRS modules. A 
connection input would also be required for the signal to be sampled.



51

14 References  
[1] http://www.bluetooth.com/Bluetooth/Learn/Technology/Compare
[2] http://www.filesaveas.com/gprs.html
[3] http://www.microchip.com
[4] http://www.sena.com/products/industrial_bluetooth/esd.php
[5] http://www.roundsolutions.com/aarlogic/index.htm
[6] http://www.roundsolutions.com/gsm-terminal/index.htm
[7] http://www.sonyericsson.com
[8] http://www.ccsinfo.com
[9] http://notepad-plus.sourceforge.net/uk/site.htm
[10] http://www.netbeans.org
[11] http://www.j2mepolish.org
[12] http://developers.sun.com/mobility/apis/articles/bluetoothintro/index.html
[13] http://developers.sun.com/mobility/apis/articles/bluetoothintro/index.html
[14] http://www.dyndns.com
[15] http://en.wikipedia.org/wiki/Telemetry

http://en.wikipedia.org/wiki/Telemetry
http://www.dyndns.com/
http://developers.sun.com/mobility/apis/articles/bluetoothintro/index.html
http://developers.sun.com/mobility/apis/articles/bluetoothintro/index.html
http://www.j2mepolish.org/
http://www.netbeans.org/
http://notepad-plus.sourceforge.net/uk/site.htm
http://www.ccsinfo.com/
http://www.sonyericsson.com/
http://www.roundsolutions.com/gsm-terminal/index.htm
http://www.roundsolutions.com/aarlogic/index.htm
http://www.sena.com/products/industrial_bluetooth/esd.php
http://www.microchip.com/
http://www.filesaveas.com/gprs.html
http://www.bluetooth.com/Bluetooth/Learn/Technology/Compare/

