Card

New tech toys are always

exciting to any gadget
junkie, and Mark's no ex-
ception. Talk about a cool
little device, the
CompactFlash card has
countless possibilities. If
you're looking to create a

digital picture frame or an
MP3 player, for example,
the CF card can do it. With
the wonder of removable
memory, you can expect
to see this format around
for some time.

www.circuitcellar.com/online

GIRGUIT GELLAR

FEATURE

ARTICLE

Mark Samuels

PIC a CompactFlash

am a gadget
junkie. Anytime a
new tech toy hits the
market, I'm the first in
line to buy one. However, when I
bought a digital camera two years ago,
it was not the camera itself that held
my fascination, it was the cool little
matchbook-sized card that stored all
the pictures (see Photo 1). As more
products appeared that used a
CompactFlash card for removable
storage, [was both delighted and de-
spondent. Delighted because
this seemed to end the apparent
curse that my enthusiasm for a
new format indicated its obso-
lescence (i.e., MiniDisc, CDj,
etc.). And, despondent because
every device that used a CF card
seemed to have some serious
processing horsepower, making
it appear that using such an
interface in lower-end designs
would be difficult. When I dis-
covered the Microchip PIC
microcontroller, I knew it was
my solution for integrating

CIRCUIT CELLAR © ONLINE

Photo 1—CompactFlash cards are available from a variety
of manufacturers in several different capacities.

CompactFlash into my own projects.
Now, I have the capability to add nu-
merous megabytes of compact, remov-
able, nonvolatile memory to virtually
any system.

The CompactFlash Association was
established in 1995 to specify the for-
mat of what was to become a subset of
the PCMCIA or PC card specification.
The result is a removable media stan-
dard that uses fewer interface signals
(50 instead of 68) and is roughly one-
third the size of a PCMCIA memory
card. The internals of the memory card
consist of a smart controller, buffer,
and varying amounts of nonvolatile
memory. The specification also defines
different modes of access to the card,
including Common Memory mode and
True IDE mode. While in True IDE
mode, the card can be directly con-
nected to an IDE bus with no active
circuitry, which makes it a great way
to add removable storage to an embed-
ded PC. However, because I was plan-
ning to use an 8-bit microcontroller, I
chose to access the CompactFlash card
in its Common Memory mode, taking
advantage of an 8-bit wide data bus in
this mode, instead of the 16-bit data
bus required for an IDE interface.

A CHOICE PIC

As for the microcontroller, I chose a
PIC16F877, one of Microchip’s newer

February 2001

1

parts. The “F” stands for

flash memory, which
makes development nicer
than the old burn, test, and
wait-for-half-an-hour-

under-a-UV-light cycle. In v
addition, Microchip’s
integrated development
environment (MPLAB]is
available (free) from its
web site, and an inexpen-
sive in-circuit debugger is
available for these flash
memory parts.

The basics of the PIC
are the same as they are for
any other part in the
PIC16xxx family, includ-
ing a RISC design with 35
instructions and a plethora

of peripherals. Although

this project does not use any of the
peripherals built into the device, the
main reason for me picking this par-
ticular part was that those peripherals
are still available for some other use. I
had to keep in mind that this is not an
isolated project but something that
will be integrated into other projects.
That is the reason I chose a 40-pin
device that has 33 I/O pins when I am
only using 17, and could therefore fit
into a 28-pin device. In addition, this
device has 8 KB of program memory
available, yet I am using far less than
that. All of these considerations were
made with the knowledge that the PIC
would be running more than the read
and write routines and would be con-
nected to more than just the
CompactFlash card.

GETTING CONNECTED

The theory of operation in interfac-
ing to the CompactFlash card in its
Common Memory mode is similar to
an IDE interface. In a nutshell, eight
registers are accessible by the host and
loaded with various data. After the
first seven registers are loaded with the
appropriate information, the eighth
(command) register is loaded with a
command, and that command is ex-
ecuted. To accomplish this, [have a
17-pin connection from the PIC to the
card, including three address lines
(E2:EQ), eight data lines (D07-D00), and
six control lines. For an absolute mini-

2 February 2001

these control signals are not necessary.

According to the CompactFlash
specification, signals CD2 and CD1 are
grounded internally to the card to
indicate that a card has been in-
serted. [1]I connect the PIC to CD1
(with a 10-kilohm pull-up), and if the
pin is low, a card is present. Another
connection that can be removed from
the interface is the RDY/-BSY signal.
In my example code, I poll this line
prior to read and write operations to
ensure that the card can accept a com-
mand, but a fixed-time delay can also
be used if free I/O pins are getting tight.

A third signal that is not absolutely
necessary but nice to have is a reset
line. Strobing the reset line low will, as
the name suggests, reset the controller
in the CF card. The other three control
lines that I use are CE1, which will
connect the card data bus (useful if
sharing an 8-bit data bus), the active
low OE (output enable), and WE (write
enable) strobe signals.

As you can see in Figure 1, the re-
maining interface lines are fairly
straightforward. The three address
lines to the card are on Port E, which is
conveniently a 3-bit wide port. The
eight data lines from the card are con-
nected to Port D, and the control lines
are on Port C. So much for the hard-
ware interface.

CIRCUIT CELLAR © ONLINE

R1
Lk u 132 prciersrr ?gk ! 13] 38| crLasH
| 2 g —Ldxreser 8 8 xres pE—
*MCLR.Upp > 3> EES
15 RD2.PSPR ;Se glo g” § Do D8 %
14 0SC1/CLKIN RD1/PSP1 1 102 D Zf Dot D0OS 39
28MhZ 0SC2,CLKOUT RD2,/PSP2 PP RE] D = Do2 Die =7
I] 2 RD3/PSP3 2> 4 D < Do3 D11 28
c1 c2 = RAB-ANG RD4.,PSP4 28 15 05 r D04 D12 29
- e RAL /AN RD5./PSPS 29 D6 Dg - Dos D13 R
5] RA2,AN2UREF - RD&/PSPS 30 D7 o7 E Dos D14 31
22p 22p ——| RA3/AN3UREF + RD7./PSP7 plid D16
1 - RA4,TOCKI 5 CEL 7 32
e — RAS/AN4.%SS RCB-TIOSO-T1CKI & CDL *CE1 *CE2 333—
- 33 RC1,T10SI,CCP2 > RESET *US1 0=
—=—RBB/INT RC2/CCP1 |5
34 8 OF OE 8 45
5] RB1 RC3-SCK.SCL 3 E Q?C *0E BUD2 20
36 RB2 RC4.SDI~SDA 54 ROV, *B5Y] ———} *CSEL us2 —
2 RB3.PGM RC5.SD0 5 . 42
397 RB4 RC6,/TX/CK Se A0 20 *WAIT 3—43
397 RBS RC7/RX/DT |=— AL 5 ADQ *INPACK :)E
——={RB&PGC ADL BUDL [—
40 8 A0 A2 8
—— RB7/PGD REB.%RD/ANS S AL > AD2
w w RE1/%LR/ANS 10 A2 '—6— AD3
Q9 RE2./%CS/AN7 5 A04 36 UE
b5 n05 *UE 5=
12| 31 l—2— ADS *I0RD Dﬁ
11 AO7 WP =35
b5 no8 *I0LR 055
= t—5— A0S RDY/XBSY [C—oes
— A8 o o o = ’
> Sa
O O
N : ; go| 1 25T26
Figure 1—Here is the PIC-to-CompactFlash physical ©
. i } . a
interface. There are eight data lines, three address lines, i 3
and six control lines, with lots of room left over on the PIC.
mum interface to a CF card, a few of ADDRESS DECODING

The functional procedure to access
the CF card is also easy, after the 116-
page CompactFlash Association Speci-
fication is dissected. The most
important bit of information in the
specification is the address decoding of
the eight control registers within the
controller portion of the card (see
Table 1). Access to the full range of
necessary registers can be achieved
using only three address lines, so -REG
and A10-A3 are hardwired to V- and
GND, respectively.

To load one of these registers, the
data sent is placed on the data lines to
the card, the 3-bit address of the de-
sired register is placed on the address
lines, and -WE is strobed low. It’s that
easy. By loading the various registers
with sector addresses (either in logical
block addressing or cylinder/head/
sector addressing) and a command in
the command register, commands can
be sent to perform a read, write, or any
number of other operations. The re-
sults of these operations most often go
through the internal buffer, and se-
quential accesses to the data register
incrementally access each byte.

For example, if a card has a sector
size of 512 bytes, a buffer size of 512
bytes, and the appropriate addressing
registers have been loaded followed by
a read sector command, the buffer is
then loaded with the contents of that
sector. The first access to the data

www.circuitcellar.com/online

register (accom-

plished by putting the -REG A10 A9-A4 A3 A2 A1 A0 -OE=0 -WE=0
address of the data 1 0 X 0O ©0 0 0 EvenRDdata Even WR data
register on the ad- 1 0 X 0 0 0 1 Error Features
dress bus and strobing 1 0 X 0 0 1 0 Sector count Sector count
—OE) will read the 1 0 X 0 0 1 1 Sector no. Sector no.

: : 1 0 X 0 1 0 0 Cylinder low Cylinder low
first byte in the 1 0 X 0 1 0 1 Cylinder high Cylinder high
buffer. The next 1 0 X 0 1 1 0 Select card/head Select card/head
strobe of —OE will 1 0 X 0 1 1 1 Status Command
read the next byte in 1 0 X 1 0 0 0 Dup. even RD data Dup. even WR data
the buffer and so on. 1 0 X 1 0 0 1 Dup. odd RD data Dup. odd WR data

1 0 X 1 1 0 1 Dup. error Dup. features
The same would be 1 0 X 1 1 1 0 Al status Device Ctl
true of a write sector 1 0 X 1 1 1 1 Drive address Reserved
operation. After the 1 1 X X X X 0 Even RD data Even WR data
sector location has 1 1 X X X X 1 Odd RD data Odd WR data

been loaded into the
appropriate registers
and the write sector command has
been loaded into the command regis-
ter, the first byte to be written is
placed on the data bus. When -WE is
strobed, that byte is written to the
first location in the buffer. The next
byte to be written is then placed on
the data bus, ~-WE is strobed again, and
so on. Because these operations go
through the buffer, which is internally
read from and written to a full sector
at a time even if the desire is only to
write one byte to the card, a full 512
bytes must be written to the buffer.
The data in the buffer does not transfer
to the card memory until the buffer is
full.

THE IDENTIFY DRIVE COMMAND

Almost all CompactFlash cards on
the market today have both sector and
buffer sizes of 512 bytes. To ensure
that’s true for a particular card, use the
identify drive command, which can be
sent to the card without loading any of
the other registers. When the value
0xEC (identify drive) is strobed into
the command register, the buffer is
immediately filled with 512 bytes of
useful information, including sector
size, buffer size, model numbers, serial
numbers, number of heads, cylinders,
tracks, and too many other goodies to
be listed here. However, they are well
documented in the CompactFlash
Association Specification.

The sample source code I have pro-
vided for downloading shows a simple
application of reading from and writ-
ing to a CompactFlash card. The pro-
gram essentially uses two bytes on a

www.circuitcellar.com/online

card to store a counter, which keeps
track of how many times the card has
been inserted into the socket. This is
accomplished by waiting for the card
detect signal (CD1) to go low, indicat-
ing that a card is present.

An identify drive command is ex-
ecuted to get the sector size (word 5)
and buffer size (word 21) of the particu-
lar card that has been inserted. The
identify drive command doesn’t re-
quire any parameters, so none of the
other registers have to be loaded with
any data. Simply load the command
register and strobe ~-WE.

The CompactFlash Association
Specification states details about each
command and the results, including
the breakdown of the 512 bytes of
information dispensed by this particu-
lar command. To get to a specific piece
of information, simply strobe —OE
enough times to get to that data in the
sequence. For example, the number of
bytes per sector is stored in the sixth
word (word 5), so strobing —OF eleven
times will make the first byte of that
particular data field appear on the data
bus.

Most of the information on the card
is stored as 16 bits, so the subroutine
in the code (CF_READ) actually
strobes ~OEF twice, storing the first
byte read in DATA_LO and the second
byte read in DATA_HI. The program
then uses these values to know how
many times to write to the buffer be-
fore that information is actually trans-
ferred from the buffer to the card
memory. Next, the program reads a
sector at a particular location but only

CIRCUIT CELLAR © ONLINE

Table 1—Here you can see the register address decoding. Note that all data can be accessed using only three address lines.

reads the first two bytes from the
buffer. These two bytes are the
counter, which is incremented and
written back to that same location on
the card.

One note of caution, running this
program on a CF card that has been
formatted and has data already stored
on it may corrupt that data and make
the card unreadable until it is refor-
matted, because this program will
overwrite a specific sector on the card.
That read and written location is
clearly annotated in the source code,
so feel free to play around with the
target location and amount of data
read or written.

There is a useful shareware applica-
tion that I used to read the raw hex
data from the card to verify the actions
of the PIC. The program is called
WinHex and is available from CNET
and various other shareware archives
on the Internet. As long as you have
the means to access a CompactFlash
card as some sort of disk on your PC,
you can use WinHex to view each
individual byte stored on the card.

LAYING THE FOUNDATION

In order to make my development
as easy as possible, I took the PIC-to-
CF interface shown in Figure 1, added
an IDE connector so I could plug the
card right onto the IDE bus of my PC,
added in a full set of test points for
each signal on the CF card (along with
in-circuit serial programming and in-
circuit debugger headers for the PIC),
and had some boards made. The end
result was a nice little development kit

February 2001

Photo 2—The development board consists of a CompactFlash
card connector, a 40-pin DIP socket for the PIC, a test point for
each individual CF card pin, a 40-pin IDE connector, a Microchip
in-circuit debugger connector, and jumpers galore for various
configurations.

(see Photo 2.

This simple example program is the
backbone of the lowest level of inter-
face to the CompactFlash card. I want
to stress that this is only the bare mini-
mum for an extremely simple inter-
face. Additional layers of firmware
would be needed to read and store
information that spans several sectors,
and external memory may be required
if the application is not one that caters
to streaming data.

This foundation, combined with
some deep reading of Microsoft’s FAT
specification [2], has allowed me to use
a PIC to extract information stored in
specific files on a Windows-formatted
CF card. Again, there is a lot more
overhead that has to go in the PIC
program to read various data from the
file structure system just to find the
location of the file on the card and be
able to follow the data through various
sectors. However, the actual data on
the card is the same, with no regard to
the mode of operation of the card (IDE
or common memory), so it’s only a
matter of understanding any other file
specification to be able to conform to
that specification within the PIC. Being
able to access information on a card
that has been formatted to a specific
file system is a nice feature, allowing
you to simply copy a certain file from
a PC onto a CF card. And, the PIC can
access the information in that same
format, without having to restructure
the data into some proprietary con-
figuration.

4 February 2001

NO LIMITS

Being the gadget junkie
that I am, it was exciting
just being able to read and
write a little 2-byte counter
on a cool little device. But,
using those same basic
subroutines, the possibili-
ties are endless. Want to
store a year’s worth of a
regularly sampled analog
signal? Puta PIC and a
CompactFlash card on it.
Want a digital picture
frame? Store bitmap files
on a CF card and hook the
PIC to an LCD. Want an
MP3 player? Keep the mu-
sic on a CF card and tie the PIC to one
of the now readily available MP3 de-
coder parts.

The point is that CompactFlash
cards are a great medium for remov-
able memory, and the format is not
going away any time soon. I doubt IBM
would have chosen the CompactFlash
form factor for its amazing 1-GB
Microdrive if support for CF was not
going to be around for years to come.
And yes, the Microdrive conforms to
the CompactFlash card specification,
so anything you do to interface to a CF
card will also work with the
Microdrive (but with a higher current
demand). One gigabyte of removable
storage for any project you can think
of! I love gadgets! [&]

Mark Samuels works at ARMA Design,
a custom design house in San Diego,
CA, where he does firmware and hard-
ware design for a wide variety of em-
bedded projects, most often using PIC
microcontrollers. He can be reached at
mark@ARMAnet.com or visit ARMA’s
web site at www.ARMAnet.com.

You can download the source code
from the Circuit Cellar web site or
from http://www.ARMAnet.com/

CompactFlash/.

CIRCUIT CELLAR © ONLINE

SOURCES

Printed circuit board
ARMA Design
(858) 549-2531
www.ARMAnet.com

PIC16F877

Microchip Technology, Inc.
(888) 628-6247

(480) 786-7200

Fax: (480) 899-9210
www.microchip.com

REFERENCES

[1] CompactFlash Association Specifi-
cation, http://
www.compactflash.org/
specdll.htm.

[2] Microsoft Corp., “FAT: General
Overview of On-Disk Format,”
http://209.67.75.168 /hardware/
fatgen.htm.

RESOURCE

Microchip Technology, Inc.,
“PIC16F877,” http://
www.microchip.com/download/lit/
pline/picmicro/families/16{87x/
datasheet/30292b.pdf.

Circuit Cellar, the Magazine for Computer Applica-
tions. Reprinted by permission. For subscription
information, call (860) 875-2199,

subscribe @circuitcellar.com or
www.circuitcellar.com/subscribe.htm.

www.circuitcellar.com/online

