
Application Report
SLAA134 - September 2001

1

Decode TV IR Remote Control Signals Using Timer_A3
Mark Buccini / Stefan Schauer MSP430

ABSTRACT

This application report describes the use of Timer_A3 to decode RC5 and SIRC TV IR remote
control signals. The decoder described in this report is interrupt-driven and operates as a
background function using specific features the Timer_A3. Only a small portion of the
MSP430 CPU’s nonreal-time resources is used. Specific hardware bit-latching capabilities
of the Timer_A3 module are used for real-time decoding of the IR data signal, independent
and asynchronous to the CPU. CPU activity and power consumption are kept to an absolute
minimum level. The Timer_A3 decoder implementation also allows other tasks to occur
simultaneously if required. The solutions provided are written specifically for MSP430x11x(1)
and MSP430x12x derivatives, but can be adapted to any other MSP430 incorporating
Timer_A3.

Contents

Introduction 2.

Clock Selection 3.

Demonstration Circuit 3.

Decoding Software 4.

RC5 Protocol 4.

Example 11x1_rc5.243 5.

SIRC Protocol 6.

Example 11x1_SRC.s43 6.

UART Software 7.

PC Monitor 7.

References 7.

Appendix A – 11x1_SIRC.s43.txt 8.

Appendix B – 11x1_RC5.s43.txt 15.

List of Figures

1 IR Decoder Demonstration Circuit 2.
2 Inverted RC5 Data Packet as Seen by the MSP430 5.
3 Inverted SIRC Data Packet as Seen by the MSP430 6.

Trademarks are the property of their respective owners.

SLAA134

2 Decode TV IR Remote Control Signals Using Timer_A3

Introduction

Adding TV remote-control decoding capability to an MSP430 application is a low-cost method of
enabling IR wireless communication. IR decoding capability can be added to an MSP430x11x(1)
application using one Timer_A3 capture/compare register, less than 200 bytes of code, and an
external sensor. See the demonstration circuit in Figure 1. For demonstration purposes, the
decoded IR information packets are transmitted serially to a PC and a LED illuminates on P1.0 if
a channel + code is received.

IN OUT

GND

TPS77033

MSP430F1121

XIN

XOUT

6 3 2

51

2

7

4

5

RX

TX

2

7

100 kΩ

4

3

5
214

P1.1

1 µF

4.7 µF

DB9

32,768 Hz

4

5

EN

RST/NMI

15
P1.2

13
P1.0GND

VCC

VSS

VOUT

VCC

680 Ω

LED

40 kHz Modulated IR

Figure 1. IR Decoder Demonstration Circuit

SLAA134

3 Decode TV IR Remote Control Signals Using Timer_A3

Both RC5 and SIRC protocols transmit packets of information serially using a 40-kHz modulated
IR carrier. A logical 1 indicates the presence of 40-kHz modulated IR, and a 0 indicates its
absence. The 40-kHz modulation is used to filter out natural forms of IR present from sources
such as sunlight or office florescent lights. While 40 kHz is the most common modulation
frequency, some systems use other frequencies in the 32-kHz to 64-kHz range. In order to
decode RC5 or SIRC signals, the 40-kHz modulation must first be removed to expose the actual
data bits in the serial packet. A simple three-pin VISHAY TSOP1840SS3V 3-V integrated sensor
is used in this report to amplify, filter, and demodulate the IR signal, providing a clean logic-level
output with only the serial data present. With no 40-kHz IR modulation present, the sensor
output is high; when 40-kHz IR is present, the output is low. Thus, the sensor also has the effect
of inverting the transmitted data in addition to removing the modulation. The IR-sensor output is
connected directly to MSP430x11x(1) input pin P1.2. P1.2 is configured by software as a
capture/compare function for Timer_A3 capture/compare register 1 (CCR1) using the port 1
option-select (P1SEL) register. Using the capture/compare features of Timer_A3 enables much
easier decoding of the IR data. CCR1 does the IR data receive and transmit bit latching in
hardware, independent of CPU and other system activity. The IR decoding is done as a
background task using minimum CPU resources. To communicate the received IR data, a UART
is implemented using CCR0. The UART transmit function is configured on P1.1.

Clock Selection

Both RC5 and SIRC packet timings are relatively slow (>1 ms/bit) compared to the operation of
the MSP430. The demonstration circuit uses a common 32,768-Hz watch crystal as the source
for the auxiliary clock (ACLK), which is also selected as the Timer_A3 clock source. With this
clock source, Timer_A3 has a resolution of 30.5 µs—more than enough accuracy to resolve
either RC5 or SIRC protocols with no bit errors. The on-chip digitally-controlled oscillator (DCO)
is used at the default frequency of approximately 1 Mhz for the CPU master clock (MCLK). As
the 32,768 Hz watch crystal sources the clock for Timer_A3 and IR decoder function, CPU
speed is not critical. The CPU only needs to operate sufficiently fast to manage the tasks
required. Using the slower ACLK for the IR decoder and the faster DCO for the CPU, both
ultralow-power standby and fast-burst code execution are enabled. The MSP430 CPU must not
be clocked from the slow watch crystal to eliminate the occurrence of long interrupt latency and
higher power consumption. The CPU must be clocked fast, but in short interrupt-driven intervals,
to conserve power and allow rapid noncompromised program execution.

Demonstration Circuit

The demonstration circuit is powered directly by a PC serial port with regulation from a 3.3-V
TPS76033 low-dropout voltage regulator. One low-power LED is used in the circuit on P1.0 to
indicate if a channel + command has been received. A serial port interface on P1.1 is
implemented using a TI SN74AHC1G04 inverter. If a fully compliant RS232 interface is required,
integrated circuits such as TI’s low-power 3-V MAX3221 can be used. Reset is pulled high and a
32,768 Hz watch crystal is used for clock generation. No phase-shift capacitors are required if a
watch crystal is used, as these are integrated in the MSP430 clock buffer.

SLAA134

4 Decode TV IR Remote Control Signals Using Timer_A3

Decoding Software

Two software examples are included. Example 11x1_rc5.s43 decodes the RC5 protocol, and
11x1_sirc.s43 decodes SIRC. The Mainloop of both examples is short and operates identically.
Only the background IR decoder software is unique.

Mainloop call #IR_Ready ; Ready IR decoder
 bis.w #LPM3,SR ; Enter LPM3, stop, save power
 call #TXIR_2_PC ; TX received command
 call #LED_Disp ; Test for Channel +
 jmp Mainloop ;

The IR decoder function is enabled in Mainloop by calling the IR_Ready subroutine. Next,
software in the Mainloop sets bits in the CPU status register (SR) to put the system into
low-power mode 3 (LPM3). In LPM3, the CPU and DCO are off, but Timer_A3 is still counting
from the ACLK with CCR1 interrupt logic fully active. Even though the system is in LPM3, the
Timer_A3 driven decoder will run interrupt-driven in the background. The architecture of the
MSP430 automatically enables the CPU and DCO when any enabled interrupt is requested. The
DCO starts and becomes stable in less than 6 µs. Short burst events can be processed
efficiently. Additionally, when an enabled interrupt occurs, the system automatically saves the
original SR on the stack and clears the SR low-power bits inside of the interrupt service routine.
After the interrupt service routine has been processed, the reti (return from interrupt) instruction
pops the original SR off the stack. The system returns to the previous state prior to the interrupt
service routine—unless the SR on the stack is modified inside of the interrupt service routine.

In this report, after a complete IR packet has been received using the background CCR1
interrupt service routine, software returns the CPU to active in Mainloop by clearing the LPM3
bits from the SR saved on the stack. This is a convenient way of managing the Mainloop with
true event-driven programming. The received IR data packet is converted to four ASCII
characters and transmitted to a PC using 2400 baud 8N1 UART protocol by calling the
TXIR_2_PC subroutine. The four ASCII characters are preceded by a carriage return and
line-feed character. The active Mainloop completes by calling the LED_Disp subroutine. The
LED_Disp subroutine will set P1.0 to power the LED if the IR data packet is a channel +
command. The Mainloop repeats, waiting in LPM3 for the next IR data packet.

RC5 Protocol

The RC5 protocol is a type of Manchester encoded data packet. Manchester data is unique in
that a data is signified by a transition in the middle of the bit. A 1 is received by the MSP430
(after inversion by the IR sensor) as a high-to-low transition, and a 0 as a low-to-high transition.
The RC5 IR packet consists of 14 bits: two start bits (S1, S0), one control bit (C), five address
bits (A4 to A0), and a six bit command code (C5 to C0). The entire 14-bit packet is received
MSB first, starting with two start bits. Figure 2 shows the RC5 packet as received by the
MSP430 after demodulation and inversion from the IR sensor. The start bits are always
transmitted as 1. The control bit toggles whenever a new key is received. The five address bits
represent 32 different potential addresses of the equipment for which the packet is intended.
The six command bits represent 64 commands that can be transmitted. The bit period for RC5 is
1.78 ms long, with half of that period high and the other half low. The duration for the complete
14-bit packet is approximately 25 ms.

SLAA134

5 Decode TV IR Remote Control Signals Using Timer_A3

”1” ”1”

1.78 ms

”1” ”0” ”0””0” ”1” ”0”

S1 S0 C A4 A3 A2 A1 A0 C5 C4 C3 C2 C1 C0

Start Control Address Code Comand Code

First Capture – TAR Counter Value Latched in CCRx

Compare – Logic Level Latched in SCCI

Figure 2. Inverted RC5 Data Packet as Seen by the MSP430

Example 11x1_rc5.243

Two CPU registers are used in the 11x1_RC5.s43 example. IRData (R6) receives the RC5 IR
packet, and IRBit (R7) is used as a temporary counter to track the IR data bits as they are
received. The choice of R6 and R7 is arbitrary—any two CPU registers or RAM bytes can be
used. Two variables are defined: Bit_50 is 1/2 of an RC5 1.78-ms bit length in Timer_A3 clocks
(same as ACLK), and Bit_75 is 1/4 of a bit length. As a 32,768-Hz watch crystal is used in this
report to generate the ACLK, BIT_50 and Bit_75 are as follows:
Bit_50 equ 29 ; 890 µs @ 32768 ACLK
Bit_75 equ 44 ; 1348 µs @ 32768 ACLK

The subroutine IR_Ready enables CCR1 to capture the Timer_A3 counter register (TAR) and
request an interrupt on the falling edge of the IR sensor output, as configured on P1.2. TAR is
captured on the falling edge and automatically stored in CCR1 and a TA1_ISR interrupt is
requested. Inside of the TA1_ISR, software determines if the interrupt was triggered from a
capture or compare. As a capture was the source of the first interrupt, BIT_75 (� of a bit length)
is added directly to CCR1, which stored the exact time the IR sensor output edge fell in the
middle of the first bit. Because the stored CCR1 capture occurred in the middle of the first bit,
adding � of a bit length will effectively offset CCR1 to the middle of the first half of the next bit.
CCR1 is now reconfigured by software to compare mode. The next CCR1 interrupt is now timed
for the middle of the first half of the second start bit. As configured, when the CCR1 compare
occurs, the logic level present at P1.2 will be latched into the register’s synchronous capture
compare input (SCCI) latch. SCCI provides the very important feature of enabling CCR1
hardware to capture and store the logic level on P1.2 with the exact timing generated from
Timer_A3, irrespective of other system or CPU activities. In this application, the CPU is actually
off while the IR decoder is enabled. Even with the CPU off, the logic level of P1.2 will be
captured and stored in SCCI exactly when the CCR1 compare occurs. Software does not
directly read P1.2; instead it reads the latched data in SCCI after the event. Software will recover
received data from SCCI bit by bit, shifting the data into the storage register IRData.

SLAA134

6 Decode TV IR Remote Control Signals Using Timer_A3

RX_Cont bit.w #SCCI,&CCTL1 ; Carry = Data bit in SCCI
 rlc.w IRData ; Carry –> IRData

After each bit has been recovered, CCR1 is reconfigured to capture on both rising and falling
edges. The next capture will occur and self-synchronize on the next bit’s midpoint transition. To
insure the data packet is decoding properly, the CCR2 interrupt is also enabled and loaded with
a value of 1/2 the bit length of the compare stored in CCR1. The next bit transition received
should occur in approximately 1/4 of a bit length if the packet is decoding properly. Inside of a
normally occurring CCR1_ISR CCR1 edge capture, CCR2 interrupt is cleared by software. If
CCR1_ISR does not capture a normally occurring edge and clears the CCR2 interrupt,
CCR2_ISR will reset the decoder assuming an overrun error. In normal operation, the balance of
the bits are recovered and received into IRData.

SIRC Protocol
The SIRC protocol uses a data packet with an encoding scheme of variable bit length. The
length of a bit determines its logical value. The start bit is 2.4 ms of modulated IR, a 600-µs 0,
and a 1.2-ms 1. All data bits, excluding the start bit, also include a 600-µs sync pulse, or lack of
IR presence. The total length of a received 0, including the sync pulse, is therefore 1200 µs, and
the total length of a 1 is 1800 µs. A complete SIRC packet consists of the start bit and 12 data
bits. The 12 data bits are comprised of a seven-bit command code (C6 to C0) and a five-bit
device code (D4 to D0). The SIRC protocol sends data LSB first. C0 is the first bit received
following the start bit.

Figure 3 shows the SIRC data packet as received by the MSP430 after demodulation and
inversion from the IR decoder.

Start”0” ”1” ”1”

2.4 ms1.2 ms 1.8 ms 1.8 ms

”0”

1.2 ms

D4 D3 D2 D1 D0 C6 C5 C4 C3 C2 C1 C0 S

StartDevice Code Comand Code

First Capture
Second Capture

Last Capture

Figure 3. Inverted SIRC Data Packet as Seen by the MSP430

Example 11x1_SRC.s43
Three CPU registers are used in the 11x1_SIRC.s43 example: IRData (R6) receives the IR data,
IRBit (R7) is used to track bits as they are received, and IRlength (R8) is used to store the length
of the data bits as they are received. Three variables are defined: IR_Mid is � of an SIRC bit
length in Timer_A3 clocks, IR_Start is approximately 2.3 ms in Timer_A3 clocks (the minimum
length of a valid start bit), and IR_Start2 is approximately 2.5 ms in Timer_A3 clocks (the
maximum length of a valid start bit).

SLAA134

7 Decode TV IR Remote Control Signals Using Timer_A3

IR_Mid equ 49 ; 1500 µs @ 32768 Hz ACLK
IR_Start equ 75 ; 2300 µs @ 32768 Hz ACLK
IR_Start2 equ 82 ; 2500 µs @ 32768 Hz ACLK

The subroutine IR_Ready enables CCR1 to capture on a falling edge from the IR sensor
connected to P1.2. The MSP430 system is then placed in LPM3 with only ACLK and Timer_A3
active. On the first falling edge, indicating the beginning of the start bit, a CCR1 capture occurs
capturing TAR into CCR1 and requesting interrupt TA1_ISR. The count in TAR is automatically
captured and stored in CCR1 by hardware, no software is required. CCR1 is stored by software
in IRLength after the capture. After the first falling edge, CCR1 capture edge is switched to a
rising edge that will capture at the end of the start bit. The length of a data bit is calculated by
subtracting the current TAR capture stored in CCR1 from the previous saved in IRLength. If the
start bit length received is not between 2.3 ms and 2.5 ms, the decoder software will reset
assuming that an error has occurred. A valid start bit should be approximately 2.4 ms. Inside the
TA1_ISR, the IRBit is used to count down the 12 data bits as they are received. Each data bit is
calculated by comparing its bit length to IR_Mid. The length of IR_Mid is 1500 µs, which is � the
difference between a 1 and a 0. A bit length greater than IR_Mid is decoded as a 1, a length less
than IR_Mid is decoded as a 0. Hardware capturing of Timer_A3 insures that software interrupt
latency does not effect the accuracy of the captured timer value and the calculated bit length.
Software does not directly read Timer_A3, but instead, the latched timer value in CCR1. The
system stack is also used to temporarily save the current CCR1 value to be subtracted from the
previous in IRlength.
IR_ST_Test push.w &CCR1 ; Save CCR1 count to stack
 sub.w IRlength,0(SP) ; Time length last capture
IR_Bit cmp.w #IR_Mid,0(SP) ; C=1 if IR RXed bit = 1
IR_Shift rrc.w IRData ; Carry –>IRData

With CCR1 hardware capturing the Timer_A3 value exactly when edges occur on P1.2, other
real-time activities can occur simultaneously with the IR decoder. The IR decoder software runs
interrupt-driven in the background. Data are shifted into IRData bit-by-bit under software control
after each bit has been received.

UART Software

The UART function is implemented with CCR0 and uses two CPU registers: RXTXData (R4)
and BitCnt (R5). A complete description of the UART function is provided in a separate
application report, please see the References section of this report.

PC Monitor

A standard PC terminal program can be used to receive the serial data packets transmitted from
the demonstration circuit. The 16-bit IRData are right justified and sent as four ASCII characters.
The terminal program must be set at 2400 baud 8N1.

References
1. MSP430x11x1 Mixed Signal Microcontroller datasheet, Texas Instruments literature number

SLAS241
2. MSP430x1xx Family Users Guide, Texas Instruments literature number SLAU049
3. Implementing a UART Function with Timer_A3, Texas Instruments literature number SLAA078
4. Photo Module for PCM Remote Control System, VISHAY literature number 82052

SLAA134

8 Decode TV IR Remote Control Signals Using TimerA3

Appendix A 11x1_SIRC.s43.txt
; THIS PROGRAM IS PROVIDED ”AS IS”. TI MAKES NO WARRANTIES OR

; REPRESENTATIONS, EITHER EXPRESS, IMPLIED OR STATUTORY,

; INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS

; FOR A PARTICULAR PURPOSE, LACK OF VIRUSES, ACCURACY OR

; COMPLETENESS OF RESPONSES, RESULTS AND LACK OF NEGLIGENCE.

; TI DISCLAIMS ANY WARRANTY OF TITLE, QUIET ENJOYMENT, QUIET

; POSSESSION, AND NON–INFRINGEMENT OF ANY THIRD PARTY

; INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO THE PROGRAM OR

; YOUR USE OF THE PROGRAM.

;

; IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, INCIDENTAL,

; CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY

; THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED

; OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT

; OF THIS AGREEMENT, THE PROGRAM, OR YOUR USE OF THE PROGRAM.

; EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF

; REMOVAL OR REINSTALLATION, COMPUTER TIME, LABOR COSTS, LOSS

; OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, OR LOSS OF

; USE OR INTERRUPTION OF BUSINESS. IN NO EVENT WILL TI’S

; AGGREGATE LIABILITY UNDER THIS AGREEMENT OR ARISING OUT OF

; YOUR USE OF THE PROGRAM EXCEED FIVE HUNDRED DOLLARS

; (U.S.$500).

;

; Unless otherwise stated, the Program written and copyrighted

; by Texas Instruments is distributed as ”freeware”. You may,

; only under TI’s copyright in the Program, use and modify the

; Program without any charge or restriction. You may

; distribute to third parties, provided that you transfer a

; copy of this license to the third party and the third party

; agrees to these terms by its first use of the Program. You

; must reproduce the copyright notice and any other legend of

; ownership on each copy or partial copy, of the Program.

;

; You acknowledge and agree that the Program contains

; copyrighted material, trade secrets and other TI proprietary

; information and is protected by copyright laws,

; international copyright treaties, and trade secret laws, as

; well as other intellectual property laws. To protect TI’s

; rights in the Program, you agree not to decompile, reverse

SLAA134

9 Decode TV IR Remote Control Signals Using TimerA3

; engineer, disassemble or otherwise translate any object code

; versions of the Program to a human–readable form. You agree

; that in no event will you alter, remove or destroy any

; copyright notice included in the Program. TI reserves all

; rights not specifically granted under this license. Except

; as specifically provided herein, nothing in this agreement

; shall be construed as conferring by implication, estoppel,

; or otherwise, upon you, any license or other right under any

; TI patents, copyrights or trade secrets.

;

; You may not use the Program in non–TI devices.

;

#include ”msp430x11x1.h”

;***

; MSP–FET430X110 Demo – Decode SIRC IR Remote Control / TX to PC @ 2400

;

; Description: Decode 12–bit SIRC format IR packet using Timer_A.

; Timer_A CCR1 is used to decode IR packet, capture mode to measure IR bit

; length. Received packet is TXed to PC using Timer_A CCR0 as a UART

; function. Packet sent as four ACII bytes, preceded by a CR and LF

; character. P1.0 is set if channel+ is RXed, reset if not. IR data are

; received LSB first. Start, 12–bits of data.

; D4–D3–D2–D1–D0–C6–C5–C4–C3–C2–C1–C0–Start

;

; Demonstrate with IR monitor – TX IRData as CR, LF, 4 ASCII Bytes

;

; MSP430F1121

; –––––––––––––––––

; /|\| XIN|–

; | | | 32kHz

; ––|RST XOUT|–

; | |

; IR Receiver–>|P1.2/CCR1 P1.0|––> LED0

; | P1.1|––> 2400 8N1

;

; Bit pattern as seen at MSP430

; Start = 2.4ms low ~ 79 @ 32kHz ACLK

; 1 = 1.2ms low

; 2 = 0.6ms low

; sync = 0.6ms high

SLAA134

10 Decode TV IR Remote Control Signals Using TimerA3

;

; sync snyc snyc snyc

; –––+ +––– +––– +––– +––+ +–––––

; | | | | | | | | | |

; +––––\\––––+ –––+ ––––––+ –––+ +–––––––––+

; ^ 0 ^ 1 ^ 0 ^ Start ^

;

; CPU registers used

#define RXTXData R4

#define BitCnt R5

#define IRData R6

#define IRBit R7

#define IRlength R8

;

; Conditions for 2400 Baud SW UART, ACLK = 32768

Bitime_5 equ 06 ; .5 bit length + small adj.

Bitime equ 014 ; 427us bit length ~ 2341 baud

 ;

IR_Mid equ 49 ; 1500us @ 32768Hz ACLK

IR_Start equ 75 ; 2300us @ 32768Hz ACLK

IR_Start2 equ 82 ; 2500us @ 32768Hz ACLK

 ;

LED0 equ 001h ; LED0 on P1.0

TXD equ 002h ; TXD on P1.1

IRIN equ 004h ; IR input on P1.2

Ch_up equ 16 ;

Ch_dwn equ 17 ;

LF equ 0ah ; ASCII Line Feed

CR equ 0dh ; ASCII Carriage Return

;

; M. Buccini

; Texas Instruments, Inc

; July 2001

;***

;–––

 ORG 0F000h ; Program Start

;–––

RESET mov.w #0300h,SP ; Initialize ’x112x stackpointer

 call #Init_Sys ; Initialize System Peripherals

 ;

SLAA134

11 Decode TV IR Remote Control Signals Using TimerA3

Mainloop call #IR_Ready ; Ready IR decoder

 bis.w #LPM0,SR ; Enter LPMx, stop, save power

 call #TXIR_2_PC ; TX received command

 call #LED_Disp ; Test for Channel +/–

 jmp Mainloop ;

 ;

;–––

Init_Sys; Initialize System Peripherals

;–––

StopWDT mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop Watchdog Timer

SetupTA mov.w #TASSEL0+MC1,&TACTL ; ACLK, continuous

SetupC0 mov.w #OUT,&CCTL0 ; TXD Idle as Mark

SetupP1 bis.b #IRIN+TXD,&P1SEL ; P1.2 CCR1, P1.1 CCR0

 bis.b #LED0+TXD,&P1DIR ; P1.0, TXD outputs

 bic.b #LED0,&P1OUT ; P1.0, low, LED off

 eint ;

 ret ; Return from subroutine

 ;

;–––

IR_Ready; Subroutine prepares to receive 12–bit SIRC into IRData buffer

;–––

 clr.w IRData ;

 clr.w IRlength ;

 mov.b #14,IRBit ; Two start edges and 12 data bits

SetupC1 mov.w #CM1+SCS+CAP+CCIE,&CCTL1 ; CAP CCI1A,falling edge,int

 ret ; Return from subroutine

 ;

;–––

TXIR_2_PC; Subroutine to send CR, LF and IRData as four ASCII bytes to PC

; R15 used as working register and not saved

;–––

 mov #CR,RXTXData ; CR to UART buffer

 call #TX_Byte ; CR ––> PC/user

 mov #LF,RXTXData ; LF to UART buffer

 call #TX_Byte ; CR ––> PC/user

 ;

TX_Word_ASCII; TX Word from IRData as four ASCII bytes

 swpb IRData ; IRData = 3412

 call #TX_Byte_ASCII ;

 swpb IRData ; IRData = 1234

SLAA134

12 Decode TV IR Remote Control Signals Using TimerA3

 ;

TX_Byte_ASCII; TX Byte from IRData in two ASCII bytes

 mov.b IRData,R15 ; transmit ..x. of value

 call #NUM_ASCIR ;

 mov.b IRData,R15 ; transmit ...x of value

 jmp NUM_ASCIA ;

 ;

NUM_ASCIR rrc.b R15 ; 1. and 3. pass

 rrc.b R15 ;

 rrc.b R15 ;

 rrc.b R15 ;

 ;

NUM_ASCIA and.b #0fh,R15 ; 2. and 4. pass

 add.b #030h,R15 ;

 cmp.b #03ah,R15 ;

 jlo NUM_End ;

 add.b #039,R15 ;

NUM_End mov.b R15,RXTXData ; load transmit buffer, FALL

 ;

;–––

TX_Byte; Subroutine to TX Byte from RXTXData Buffer using CCR0 UART

;–––

 mov.w &TAR,&CCR0 ; Current state of TA Counter

 add.w #Bitime,&CCR0 ; Some time till first bit

 bis.w #0100h, RXTXData ; Add mark stop bit to RXTXData

 rla.w RXTXData ; Add space start bit

 mov.w #10,BitCnt ; Load Bit Counter, 8 data + SP

 mov.w #OUTMOD0+CCIE,&CCTL0 ; TXD = mark = idle

TX_Wait tst.w BitCnt ; Wait for TX completion

 jnz TX_Wait ;

 ret ;

 ;

;–––

TA0_ISR ; RXTXData Buffer holds UART Data

;–––

 add.w #Bitime,&CCR0 ; Time to Next Bit

UART_TX bic.w #OUTMOD2,&CCTL0 ; TX Mark

 rra.w RXTXData ; LSB is shifted to carry

 jc TX_Test ; Jump ––> bit = 1

TX_Space bis.w #OUTMOD2,&CCTL0 ; TX Space

SLAA134

13 Decode TV IR Remote Control Signals Using TimerA3

TX_Test dec.w BitCnt ; All bits sent (or received)?

 jnz TX_Next ; Next bit?

 bic.w #CCIE,&CCTL0 ; All Bits TX/RX, Disable Int.

TX_Next reti ;

 ;

;–––

TAX_ISR; Common ISR – CCR1–4 and overflow

;–––

 add.w &TAIV,PC ; Add Timer_A offset vector

 reti ; CCR0 – no source

 jmp TA1_ISR ; CCR1

; jmp TA2_ISR ; CCR2

; reti ; CCR3 – not used

; reti ; CCR4 – not used

;TA_over reti ; TA overflow – not used

 ;

TA1_ISR mov.w #CM0+SCS+CAP+CCIE,&CCTL1 ; CAP CCI1A,rising edge,int

IR_ST_Test push.w &CCR1 ; Temp save to stack CCR1 count

 sub.w IRlength,0(SP) ; Time length last capture

 cmp.b #14,IRBit ; First falling edge?

 jeq IR_Next ; Jump ––> first falling edge

 cmp.b #13,IRBit ; Start bit?

 jne IR_Bit ; Jump ––> not start bit

; cmp.w #IR_Start2,0(SP) ; Start bit > 2.5ms

; jge IR_error ; Jump––> IRlength > 2.5ms

 cmp.w #IR_Start,0(SP) ; Start bit minimum ~ 2.3ms

 jge IR_Next ; Jump––> IRlength > 2.3ms

IR_error incd.w SP ; Clean up stack

 call #IR_Ready ; ERROR – restart RX sequence

 reti ; Return from interrupt

 ;

IR_Bit cmp.w #IR_Mid,0(SP) ; C=1 if IR RXed bit = 1

IR_Shift rrc.w IRData ; Carry –>IRData

IR_Next mov.w &CCR1,IRlength ; Save captured edge

 incd.w SP ; Clean up stack

 dec.b IRBit ;

 jnz IR_Cont ; Jump––> not last bit

IR_Comp clr.w &CCTL1 ; Disable CCR1

 rrc.w IRData ; 12–bit IRData right justified

 rrc.w IRData ;

SLAA134

14 Decode TV IR Remote Control Signals Using TimerA3

 rrc.w IRData ;

 rrc.w IRData ;

 and.w #0FFFh,IRData ; Isolate 12–bit packet

 mov.w #GIE,0(SP) ; Decode Byte = Active in Mainloop

IR_Cont reti ;

 ;

;–––

LED_Disp; LED0 (P1.0) set if IRData = Channel+ code (16)

;–––

 and.w #07Fh,IRData ; Isolate 7–bit command code

LED_off bic.b #01h,&P1OUT ; LED0 off

LED0_tst cmp.w #Ch_up,IRData ; Test for Channel+ (32)

 jne LED_exit ;

 bis.b #01h,&P1OUT ; LED0 on

LED_exit ret ; Return from subroutine

 ;

 ;

;–––

; Interrupt Vectors Used

;–––

 ORG 0FFFEh ; MSP430 RESET Vector

 DW RESET ;

 ORG 0FFF2h ; Timer_A0 Vector

 DW TA0_ISR ;

 ORG 0FFF0h ; Timer_AX Vector

 DW TAX_ISR ;

 END

SLAA134

15 Decode TV IR Remote Control Signals Using TimerA3

Appendix B 11x1_RC5.s43.txt
; THIS PROGRAM IS PROVIDED ”AS IS”. TI MAKES NO WARRANTIES OR

; REPRESENTATIONS, EITHER EXPRESS, IMPLIED OR STATUTORY,

; INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS

; FOR A PARTICULAR PURPOSE, LACK OF VIRUSES, ACCURACY OR

; COMPLETENESS OF RESPONSES, RESULTS AND LACK OF NEGLIGENCE.

; TI DISCLAIMS ANY WARRANTY OF TITLE, QUIET ENJOYMENT, QUIET

; POSSESSION, AND NON–INFRINGEMENT OF ANY THIRD PARTY

; INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO THE PROGRAM OR

; YOUR USE OF THE PROGRAM.

;

; IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, INCIDENTAL,

; CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY

; THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED

; OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT

; OF THIS AGREEMENT, THE PROGRAM, OR YOUR USE OF THE PROGRAM.

; EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF

; REMOVAL OR REINSTALLATION, COMPUTER TIME, LABOR COSTS, LOSS

; OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, OR LOSS OF

; USE OR INTERRUPTION OF BUSINESS. IN NO EVENT WILL TI’S

; AGGREGATE LIABILITY UNDER THIS AGREEMENT OR ARISING OUT OF

; YOUR USE OF THE PROGRAM EXCEED FIVE HUNDRED DOLLARS

; (U.S.$500).

;

; Unless otherwise stated, the Program written and copyrighted

; by Texas Instruments is distributed as ”freeware”. You may,

; only under TI’s copyright in the Program, use and modify the

; Program without any charge or restriction. You may

; distribute to third parties, provided that you transfer a

; copy of this license to the third party and the third party

; agrees to these terms by its first use of the Program. You

; must reproduce the copyright notice and any other legend of

; ownership on each copy or partial copy, of the Program.

;

; You acknowledge and agree that the Program contains

; copyrighted material, trade secrets and other TI proprietary

; information and is protected by copyright laws,

; international copyright treaties, and trade secret laws, as

; well as other intellectual property laws. To protect TI’s

; rights in the Program, you agree not to decompile, reverse

SLAA134

16 Decode TV IR Remote Control Signals Using TimerA3

; engineer, disassemble or otherwise translate any object code

; versions of the Program to a human–readable form. You agree

; that in no event will you alter, remove or destroy any

; copyright notice included in the Program. TI reserves all

; rights not specifically granted under this license. Except

; as specifically provided herein, nothing in this agreement

; shall be construed as conferring by implication, estoppel,

; or otherwise, upon you, any license or other right under any

; TI patents, copyrights or trade secrets.

;

; You may not use the Program in non–TI devices.

;

#include ”msp430x14x.h”

;***

; MSP–FET430X110 Demo – Decode RC5 IR Remote Control / TX to PC @ 2400

;

; Description: Decode 12–bit bi–phase RC5 format IR packet using Timer_A.

; Timer_A CCR1 is used to decode IR packet, capture mode to detect mid–bit

; edge and compare mode to latch data bit. CCR2 is used for decoder

; over–run detection. Received packet is TXed to PC using Timer_A CCR0 as

; a UART function. Packet sent as four ACII bytes, preceded by a CR and LF

; character. P1.0 is set if channel+ is RXed, reset if not.

; IR data are received MSB first. 2 Start, C and 11–bits of data.

; S1–S2–C–A4–A3–A2–A1–A0–C5–C4–C3–C2–C1–C0

;

; Demonstrate with IR monitor – TX IRData as CR, LF, 4 ASCII Bytes

;

; MSP430F1121

; –––––––––––––––––

; /|\| XIN|–

; | | | 32kHz

; ––|RST XOUT|–

; | |

; IR Receiver–>|P1.2/CCR1 P1.0|––> LED

; | P1.1|––> 2400 8N1

;

; Bit pattern as seen at MSP430

;

; 1.78ms

; +––– +––– +––– –––– –––+ +–––

SLAA134

17 Decode TV IR Remote Control Signals Using TimerA3

; | | | | | | | | | | |

; –––+ –––+ +––+––– +––+ +–––––+ +––

; ^Start^Start^ 1 ^ 0 ^ 0 ^

;

; CPU registers used

#define RXTXData R4

#define BitCnt R5

#define IRData R6

#define IRBit R7

;

; Conditions for 2400 Baud SW UART, ACLK = 32768

Bitime_5 equ 06 ; .5 bit length + small adj.

Bitime equ 014 ; 427us bit length ~ 2341 baud

 ;

LED0 equ 001h ; LED0 on P1.0

TXD equ 002h ; TXD on P1.1

IRIN equ 004h ; IR input on P1.2

Bit_50 equ 29 ; 890 us @ 32768 ACLK

Bit_75 equ 44 ; 1348 us @ 32768 ACLK

Ch_up equ 32 ;

Ch_dwn equ 33 ;

LF equ 0ah ; ASCII Line Feed

CR equ 0dh ; ASCII Carriage Return

;

; M. Buccini

; Texas Instruments, Inc

; July 2001

;***

;–––

 ORG 0F000h ; Program Start

;–––

RESET mov.w #0300h,SP ; Initialize ’x112x stackpointer

 call #Init_Sys ; Initialize System Peripherals

 ;

Mainloop call #IR_Ready ; Ready IR decoder

 bis.w #LPM3,SR ; Enter LPMx, stop, save power

 call #TXIR_2_PC ; TX received command

 call #LED_Disp ; Test for Channel +/–

 jmp Mainloop ;

 ;

SLAA134

18 Decode TV IR Remote Control Signals Using TimerA3

;–––

Init_Sys; Initialize System Peripherals

;–––

StopWDT mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop Watchdog Timer

SetupTA mov.w #TASSEL0+MC1,&TACTL ; ACLK, continuous

SetupC0 mov.w #OUT,&CCTL0 ; TXD Idle as Mark

SetupP1 bis.b #IRIN+TXD,&P1SEL ; P1.2 CCR1, P1.1 CCR0

 bis.b #LED0+TXD,&P1DIR ; P1.0, TXD outputs

 bic.b #LED0,&P1OUT ; P1.0, low, LED off

 eint ;

 ret ; Return from subroutine

 ;

;–––

IR_Ready; Subroutine to prepare to receive 12–bit RC5 into IRData

;–––

 clr.w IRData ;

 mov.w #014,IRBit ; 12 data + 1 start + completion

SetupC1 mov.w #CM1+SCS+CAP+CCIE,&CCTL1 ; CAP CCI1A, falling edge, int

 ret ;

 ;

;–––

TXIR_2_PC; Subroutine to send CR, LF and IRData as four ASCII bytes to PC

; R15 used as working register and not saved

;–––

 mov #CR,RXTXData ; CR to UART buffer

 call #TX_Byte ; CR ––> PC/user

 mov #LF,RXTXData ; LF to UART buffer

 call #TX_Byte ; CR ––> PC/user

 ;

TX_Word_ASCII; TX Word from IRData as four ASCII bytes

 swpb IRData ; IRData = 3412

 call #TX_Byte_ASCII ;

 swpb IRData ; IRData = 1234

 ;

TX_Byte_ASCII; TX Byte from IRData as two ASCII bytes

 mov.b IRData,R15 ; transmit ..x. of value

 call #NUM_ASCIR ;

 mov.b IRData,R15 ; transmit ...x of value

 jmp NUM_ASCIA ;

 ;

SLAA134

19 Decode TV IR Remote Control Signals Using TimerA3

NUM_ASCIR rrc.b R15 ; 1. and 3. pass

 rrc.b R15 ;

 rrc.b R15 ;

 rrc.b R15 ;

 ;

NUM_ASCIA and.b #0fh,R15 ; 2. and 4. pass

 add.b #030h,R15 ;

 cmp.b #03ah,R15 ;

 jlo NUM_End ;

 add.b #039,R15 ;

NUM_End mov.b R15,RXTXData ; load transmit buffer, FALL

 ;

;–––

TX_Byte; Subroutine to TX Byte from RXTXData Buffer using CCR0 UART

;–––

 mov.w &TAR,&CCR0 ; Current state of TA Counter

 add.w #Bitime,&CCR0 ; Some time till first bit

 bis.w #0100h, RXTXData ; Add mark stop bit to RXTXData

 rla.w RXTXData ; Add space start bit

 mov.w #10,BitCnt ; Load Bit Counter, 8 data + SP

 mov.w #OUTMOD0+CCIE,&CCTL0 ; TXD = mark = idle

TX_Wait tst.w BitCnt ; Wait for TX completion

 jnz TX_Wait ;

 ret ;

 ;

;–––

TA0_ISR ; RXTXData Buffer holds UART Data.

;–––

 add.w #Bitime,&CCR0 ; Time to Next Bit

UART_TX bic.w #OUTMOD2,&CCTL0 ; TX Mark

 rra.w RXTXData ; LSB is shifted to carry

 jc TX_Test ; Jump ––> bit = 1

TX_Space bis.w #OUTMOD2,&CCTL0 ; TX Space

TX_Test dec.w BitCnt ; All bits sent (or received)?

 jnz TX_Next ; Next bit?

 bic.w #CCIE,&CCTL0 ; All Bits TX/RX, Disable Int.

TX_Next reti ;

 ;

;–––

TAX_ISR; Common ISR – CCR1–4 and overflow

SLAA134

20 Decode TV IR Remote Control Signals Using TimerA3

;–––

 add.w &TAIV,PC ; Add Timer_A offset vector

 reti ; CCR0 – no source

 jmp TA1_ISR ; CCR1

 jmp TA2_ISR ; CCR2

; reti ; CCR3

; reti ; CCR4

;TA_over reti ; Return from overflow ISR

 ;

TA1_ISR bit.w #CAP,&CCTL1 ;

 jc RX_edge ; Jump –> Edge captured

 ;

RX_Bit dec.w IRBit ;

 jz RX_Comp ; Test of end of packet

RX_Cont bit.w #SCCI,&CCTL1 ; Carry = Data bit in SCCI

 rlc.w IRData ; Carry –> IRData

 mov.w #CM1+CM0+CAP+CCIE+SCS,&CCTL1 ; CAP CCI1A,both edges, int

 push.w &CCR1 ; Max time till next edge

 add.w #Bit_50,0(SP) ;

 pop.w &CCR2 ;

 mov.w #CCIE,&CCTL2 ; Enable timeout interrupt

 reti ;

 ;

RX_Comp clr.w &CCTL1 ; Disable CCR1

 and.w #0FFFh,IRData ; Isolate 12–bit packet

 mov.w #GIE,0(SP) ; Decode = Active in Mainloop

 reti ;

 ;

RX_edge clr.w &CCTL2 ; Disable CCR2 timeout

 mov.w #CCIE,&CCTL1 ; Compare mode w/ int.

 add.w #Bit_75,&CCR1 ; Time to middle of data bit

 reti ;

 ;

TA2_ISR clr.w &CCTL2 ; Disable CCR2 timeout

 call #IR_Ready ; ERROR – restart RX sequence

 reti ; Return from interrupt

 ;

;–––

LED_Disp; LED0 (P1.0) set if IRData = Channel+ code (32)

;–––

SLAA134

21 Decode TV IR Remote Control Signals Using TimerA3

 and.w #03Fh,IRData ; Isolate 6–bit command code

LED_off bic.b #01h,&P1OUT ; LED0 off

LED0_tst cmp.w #Ch_up,IRData ; Test for Channel+ (32)

 jne LED_exit ;

 bis.b #01h,&P1OUT ; LED0 on

LED_exit ret ; Return from subroutine

 ;

;–––

; Interrupt Vectors Used

;–––

 ORG 0FFFEh ; MSP430 RESET Vector

 DW RESET ;

 ORG 0FFF2h ; Timer_A0 Vector

 DW TA0_ISR ;

 ORG 0FFF0h ; Timer_AX Vector

 DW TAX_ISR ;

 END

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2001, Texas Instruments Incorporated

