Lecture #2: Verilog HDL

Paul Hartke
Phartke@stanford.edu
Stanford EE183
April 8, 2002

EE183 Design Process

Understand problem and generate block diagram
of solution

Code block diagramin verilog HDL

Synthesize verilog

Create verification script to test design

Run static timing tool to make sure timing is met

Design is mapped, placed, routed, and *.bit fileis
created download to FPGA

Moduleisbasic verilog construct

Buses are created as
vectors. For n bit bus use
convention: [n-1:0]

module synchronizer (in, out, clk);
parameter SIZE = 1;

. All Input and Output ports
. e must be declared as such.
input [SIZE-1:0] in Canalsobe* inout” for tri-

input clk; _ State but rarely used
output [SIZE-1:0] out;

All internal variables must be

explicitly declared.
“wire” isone type of net used to
connect things

wire [SIZE-1.Q] x;

dff #(SIZE) dff_1(.d(in[SIZE-1:0]), .clk(clk), .q(x[SIZE-1:0]));
dff #(SIZE) dff_2(.d(x[SIZE-1:0]), .cIk(clK), .q(out[SIZE-1:0])):

Instantiation: “ dff’ is name of module ’

“#(SIZE)" overwrites parameters
“.port_in_called_module(signal_in_this_model)”

endmodule

Lexical Conventions

» Thelexical conventions are close to the
programming language C++.

» Comments are designated by // to the end of aline
or by /* to */ across several lines.

» Keywords, e. g., module, are reserved and in all
lower case |etters.

» Thelanguage is case sensitive, meaning upper and
lower case |etters are different.

» Spaces are important in that they delimit tokensin
the language.

Number specification

* Numbers are specified in the traditional form of a
series of digits with or without asign but also in
the following form:

* <size><base format><number>
— where <size> contains decimal digits that specify the size of the
constant in the number of bits. The <size> is optional. The <base
format> isthe single character ' followed by one of the following
characters b, d, o and h, which stand for binary, decimal, octal
and hex, respectively. The <number> part contains digits which
arelegal for the <base format>. Some examples:

— 4b0011 // 4-bit binary number 0011
- 5d3 // 5-bit decimal number
— 32 hdeadbeef // 32 bit hexadecima number

Bitwise/Logical Operators

* Bitwise operators operate on the bits of the

operand or operands.

— For example, the result of A & B isthe AND of each
corresponding bit of A with B. Operating on an unknown (x) bit
resultsin the expected value. For example, the AND of an x with
aFALSE isan FALSE. The OR of an x witha TRUE isa TRUE.

e Operator Name

o ~ Bitwisenegation
* & BitwiseAND

o | BitwiseOR

o A Bitwise XOR

. ~& BitwiseNAND
o ~ BitwiseNOR

o ~Morf~ Equivalence (BitwiseNOT XOR)

{.}

<<

Miscellaneous Operators

Concatenation of nets

* Joins bits together with 2 or more comma-separated

expressions, €, g. { A[0], B[1:7]} concatenates the zeroth bit
of Atobits1to7 of B.

Shift left (Multiplication by power of 2)

» Vacated hit positions are filled with zeros, e. g., A = A << 2;

>>

shifts A two bits to left with zero fill.

Shift right (Division by power of 2)

» Vacated bit positions are filled with zeros.

Conditional (Createsa MUX)

 Assigns one of two values depending on the conditional

expression. E.g., A =C>D ?B+3: B-2; meansif C greater
than D, the value of A is B+3 otherwise B-2.

Unary Reduction Operators

» Unary reduction operators produce asingle bit
result from applying the operator to al of the bits
of the operand. For example, & A will AND al the

bits of A.
* Operator Name
« & AND reduction
o | OR reduction
o« A XOR reduction
o ~& NAND reduction
o ~ NOR reduction
o« N XNOR reduction

* | have never used thesg, if you find aredistic
application, let me know... ©

Continuous Assignment

e assignout =inl & in2;
— Amazingly enough creates an “and” gate!

— Anytime right hand side (RHS) changes, left
hand side (LHYS) is updated
— LHS must be a“wire”

Procedural Assignments

* Wewill only use them to define combinational
logic
— asaresult, blocking (=) and nonblocking assignment
(<=) are the same

reg out; T
aways @(inl or in2) All nput Sgnals st bein ’

begin
OUt = Inl & In2; Begin and End define a block ’
end in Verilog

|f-Else Conditional
Procedural Assignment

 Just acombinational logic mux

» Every if must have matching else or state element
will be inferred—why?

always @(control or in)

begin
If (control == 1'b1)
out =in;
end

» Watch nestings—make life easy, dways use
begin...end

Logical Operators

* Logical operators operate on logical operands and
return alogical value, i. e., TRUE() or
FALSE(0).

— Used typicaly in if and while statements.

» Do not confuse logical operators with the bitwise Boolean
operators. For example, ! isalogical NOT and ~ isabitwise
NOT. Thefirst negates, e. g., (5 == 6) is TRUE. The second
complements the bits, e. g., ~{1,0,1,1} is0100.

— Operator Name
-1 Logica negation
- && Logica AND

— |l Logical OR

Relational Operators

» Relationa operators compare two operands and
return alogical value, i. e.,, TRUE(1) or
FALSE(0)—what do these synthesize into?

« If any bit is unknown, the relation is ambiguous and the result
is unknown — should never happen!

Operator Name

> Greater than

>= Greater than or equal
< Less than

<= Less than or equal
== Logical equality

I= Logical inequality

Case Statement Procedural
Assignment

module mux4_to_1 (out, i0, i1, i2, i3, sl, 0);

output out;
input i0, i1, 12, i3; Note how all netsthat are inputsto the ’
. . always block are specified in the
input s1, s0; sensitivity list
regout;
aways @(sl or O ori0orilori2 o3}
begin Make sure all 2*n cases are covered or
case ({sl, s0}) include a“ default:” statement or else
2'b00: out =i0; state elements will beinferred

2'b01: out =il
2'b10: out = i2;
2bll: out =i3; _
default: out = 1'bx; _ Xlisdon't care
d After initial synchronous reset
enacase there should never be any X’sin
end your design

endmodule

So how do | get D-FlipFlops?

e Use 183lib.v to instantiate them
— dff, dffr, dffre

» These are the only state elements (except
for CoreGen RAMs) alowed in your design

Dffre guts

/1 dffre D flip-flop with active high enable and reset
/I Parametrized width; default of 1
module dffre (d, en, r, clk, g);

parameter WIDTH = 1;

input en;

inputr;

input clk;

input [WIDTH-1:0] d;

output [WIDTH-1:0] q;

reg [WIDTH-1:0] q;

always @ (posedgecl . .
if (1) Only changeLHSon“ posedge clk
Notethat if statement is missing an else
q <= {WIDT ;
elseif (en)
q<=d; .
Replicator Operator.
elseq<=g; How cutel! ©

endmodule

No Behaviora Code

* No“initial” statements
— Often used to reset/initialize design
* No system tasks
—“$" commands (ie, “$display()”)
 For both, use Xilinx simulator and scripts

Use Case Statement for FSM

e |nstantiate state e ements as dffX

« Put next state logic in always @() block

— Input is curstate (.q of dffX) and other inputs

— Output is nextstate which goesto .d of dffX

— Use combined case and if statements

» “1f” good for synchronous resets and enables

» Synthesis tools auto-magically minimizes al

combinational logic.

— Three cheers for synthesis!! ©

8-hit Counter

module counter_8 (clk, reset, en,cntr_q);
input clk;
input reset;
input en;
output [7:0] cntr_g;

reg[7:0] cntr_d;
wire[7:0] cntr_g;

/I Counter next statelogic
always @(cntr_q)
begin

cntr_d =cntr_q + 8b1l;
end

/I Counter state elements
dffre#(8) cntr_reg (.clk(clK), .r(reset), .en(en), .d(cntr_d), .q(cntr_q));

Endmodule

CoreGen

* Tools—> Design Entry - Core Generator
— Useful info appears in “language assistant”—Read it!
* Only use this for memories for now
— Do you need anything else??
* | really cannot think of anything now
» Caveat: Block Memory does not smulate
correctly with initial values.

— Must create gate netlist by completing synthesis and
implementation.

— Simulate by loading time_sim.edn into Simulator

10

