There are a few ways to do averaging. First, the capacitor can help you if you measure current on the solar cell side, as we discussed. Second, you can put your current sensor through an analog low pass filter which will filter out a good amount of the PWM switching. Third, you can digitally filter or average.
The problem with two values, one for on and one for off, is that you are not accounting for the duty cycle variation. You really want a weighted average with the weights given by D and 1-D. Two values does not do that, but filtering can do the effective averaging and then you only need to sample one value to get the average. There is no one right way to do this, and you will have to figure out a method that meets your criteria and design philosophy.
First of all, 100 Hz sounds too low for a PWM frequency.
In general yes it is a problem. But given your situation, and depending on your final implementation possibly not. Again, you have not defined things well enough, nor analyzed anything for me to say with confidence. However, I can say with confidence that it is good design practice to do as I said and provide buffering and filtering to your sensor readings.In general terms, would it be a big problem if multiple samples are taken and then the averaging is done? Thanks.
Hi
But what does really happen inside a low-pass filter? To make easier to visualize, at least for me, we will use electron current instead of conventional current.
For a 0 Hz signal, i.e. DC signal, electrons are moving at a constant speed. I understand that the actual drift velocity of electrons is very low but let's not get into this issue. In case of a DC signal, after some time electrons get accumulated on negative plate of the capacitor and no more electrons would be able to flow inside the plate because accumulated electrons would be push against the battery's potential with the same force.
Thank you for the help.
Regards
PG
Q1: It seems you have this basically correct. However you will never completely attenuate any frequencies as you seemed to imply.
Q2: What spectrum would you expect from sampling? You can do the calculations, or use transform properties to show what the spectrum should be.
Q3: I like to think of the capacitor in the frequency domain as an impedance. We know the effect of sine waves on any impedance whether R, L or C. At any particular frequency you can think of the filter as a voltage divider. At high frequency 1/wC is very low and you are basically shorting out the voltage source, hence the attenuation is increasing at frequency increases. If you understand a voltage divider with resistors and DC voltage, then you can understand the filter with AC sine waves and impedances.
That's a good interpretation. Yes, I have an understanding of the effect of sine waves on any impedance whether R, C or L. But couldn't you please help me to extend or correct my crude model or interpretation from previous post of mine? I'm sure different interpretations are possible of a same phenomenon and some might seem less formal and more along layman terms. Thank you.
Regards
PG
All I mean is that a filter never completely attenuates something to exactly zero. For all practical purposes what you said is correct, but I just want to make sure you are aware that some small amount of those high frequencies still get through.Q1:
I don't know why you say so because to me what I say here seems correct. Could you please elaborate a little on where I have it wrong. In order to quote some particular piece of text from the embedded image, you can use my previous post. Thanks.
I'll need to take some time to check this. I've been a little busy today. I'm wrapping a lot of things up at work so I can leave for vacation tomorrow.Q2:
In this attachment from my previous post, we can see a series of sampling pulses in FIGURE 13-3. I think a single sampling pulse looks more like a trapezoidal pulse in reality. Fourier transform of trapezoidal pulse is given here and plot of frequency spectrum is shown here. This is the **broken link removed** I have used (problem #5, part (a)). I think the sampling frequency spectrum shown in FIGURE 13-5 and 13-6 ignores the parts in green highlight. Do I have it correct? Please let me know.
Q3:
That's a good interpretation. Yes, I have an understanding of the effect of sine waves on any impedance whether R, C or L. But couldn't you please help me to extend or correct my crude model or interpretation from previous post of mine? I'm sure different interpretations are possible of a same phenomenon and some might seem less formal and more along layman terms. Thank you.
If by "speed" you mean "rate" then this is ok. You are correct to not worry about the drift velocity. What really matters is the rate of electron (or Coulomb, or charge) flow. So, what you are saying is "at a steady state constant current".For a 0 Hz signal, i.e. DC signal, electrons are moving at a constant speed. I understand that the actual drift velocity of electrons is very low but let's not get into this issue.
Yes, so what you are saying is the steady state current is zero. Zero current will result in zero voltage drop on the resistor. Hence, the output voltage will equal the input voltage.In case of a DC signal, after some time electrons get accumulated on negative plate of the capacitor and no more electrons would be able to flow inside the plate because accumulated electrons would be push against the battery's potential with the same force.
This is confusing. What amplitude are you referring to? Current? Voltage? Charge? We know the current is low at low frequency even though the time for the time to flow in a half period is greater. So what is the net effect on the total charge transfer in a quarter of the period. If you can make sense of this, that's great, but it seems confusing to me to use that for visualization.For an AC signal, we can say that electrons oscillate around their mean position. At low frequencies, amplitude of oscillations is larger but there are less oscillations per second. At higher frequencies, amplitude of oscillations get decreases but now there are greater number of oscillations per second.
Again, this is confusing. What is "maximum capacity" referring to? It seems that both the time and the current determine how fast much you can change the voltage in a quarter cycle. There would also seem to be a different intuitive explanation in the low frequency region, the cutoff region and the high frequency region. What you described might apply better to one of those regions.Why does the voltage across capacitor get dropped as frequency is increased?
This is my own attempt at the answer. As the frequency is increased, the electrons don't get enough time to accumulate inside the negative plate to maximum capacity (the present negative plate was positive plate in the previous ac cycle). Likewise, on the positive plate the electrons don't get enough time to get depleted to maximum capacity. Let me put it differently. Say when the frequency was 10 Hz, the number of electrons which could be accumulated on negative plate was 100 and in similar manner the number of electrons which could be depleted from positive plate is also 100. When the frequency is increased to 500 Hz, the number becomes, say, 10. Now the 100 accumulated electrons on negative plate compared to the 10 have greater potential to do work while moving toward the positive plate. I hope you get the idea what I'm trying to say. Do I make any sense to you?
On your Q2, I'm not sure I'm following all of what you are saying. It is interesting that you are trying to use a trapazoidal sampling pulse, but for conceptual purposes, why not just use an impulse function for sampling. You will find this worked out in any of your DSP books.
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?