Tony, the 3% you quote rule of thumb, new to me so I would like to
understand what you are saying. Is it the knee turning into sat occurs
when Ib = 3% at beta 10% of its rated value ? Not sure I understand
the comment.
Rewgards, Dana.
3% current means Ic:/Ib= 33 instead of 10:1 or Ib=10% of Ic.
This means the Vce(sat) will be closer to 0.7 where Vcb ~ 0V rather than say Vce=0.2 when C-B is forward biased.
The actual characteristics of testing Vce(sat) is rounded off near 10% of max linear hFE , like 2%, 5% or 10% of Ic
So I suggested 3% as my rule of thumb because going to Ib= 10% of Ic only reduces the Vce(sat) by a fraction of the Vcb diode drop which is still low enough to satisfy most consumer applications and TTL low which is 0.8V max.
If you review a few hundred transistor datasheets for the test conditions of Vce(sat) @ x mA you will find ;
if hFE is < 200 Ic/Ib=10 ( 10% base current )
if hFE > 200 > Ic/Ib = 20 (5% base current
if hFE > 500 Ic/Ib = 50 ( 2% base current), some are rated 1%
These are Mfg choice, but later adapted by industry not laws of physics but rather production yield.
- then there are some parts with hFE >200 rated at multiple ratios 2%, 5% and 10% of Ic , many from Diodes Inc who have several hundred patents on their process with low Rce and high hFE up to 1500 I think. But some from Fairchild, now TI.
The BJT portfolio ranges from less than 30V to over 100V and offer highly efficient saturation voltage performance, fast switching speeds, and small footprint.
(some #'s from memory , you may verify *)
Rce is a parameter which, I have used for many decades as Rce=Vce/Ic in saturation which is approximately Rce< k/Pmax ( PN2222A is 2 to 1 ohms and 2N3904 is 6 to 4 ohms) where k depends on process design ranging from 0.3 to 1 for most but not all and also likewise for all diodes for Rs above 0.6V
Although more expensive to achieve 10 mohm in a BJT than a Enh-mode FET, the Cout is far lower in BJT's than Coss in FETS (ie. more speed or f_t or BW )