Measure:
L1 = Self inductance from tap to one end of the coil
L2 = Self inductance from tap to other end of the coil
L3 = Self inductance of entire coil
Then, mutual inductances between various sections of the coil are given by:
M12 = (L3 - L2 - L1)/2
Coupling coefficient:
k12 = M12/sqrt(L1 * L2) = (L3 - L2 - L1)/(2 * sqrt(L1 * L2))
BTW, coupling coefficients are not necessarily reciprocal. In other words: for two coupled coils 1 and 2, k12 is not necessarily equal to k21. However, for most coils k12 and k21 tend to be close in value. The above formulas assume that k12 and k21 are equal.
I could give an example where k12 and k21 are vastly different, but it would require me to draw a picture.
Since you're simulating this, you may not have an actual coil to measure. In that case, use an online inductance calculator to figure out the different values.
http://electronbunker.ca/eb/InductanceCalc.html
To do this, pick a reasonable coil form diameter and wire size. Feed it into the calculator, and adjust the number of turns until you get the overall value of 5uH. Suppose you end up with 36 turns. Now, decide where you want the tap located. For simplicity, let's assume you want the tap at the halfway position, 18 turns. So, using the calculator again, change the number of turns from 36 to 18, leaving the diameter, pitch and wire size the same. The new value is 2.11 uH. This is the value of self inductance from the centre tap to either end of the coil. You now have enough info to apply the above formulas and calculate the coupling coefficient.
Example 1 (long skinny coil):
36 turns #24 AWG (enamel insulation) close wound on 10mm diameter form.
L3 = 5.04 uH
Tap at half way point (18 turns)
L2 = L1 = 2.11 uH
k12=0.194
Example 2 (short fat coil):
6 turns #24 AWG (enamel insulation) close wound on 60mm diameter form.
L3 = 4.97 uH
Tap at half way point (3 turns)
L2 = L1 = 1.44 uH
k12=0.726
Edit: I revised the numbering convention for the parts of the coil and corrected the formulas. The original post had calculated the coupling coefficient from one part of the coil to the entire coil, not from one part to the other part as is required.