I have attached the following circuit in which resonance is happening. Initial voltage of capacitor C1 is Vo , ie Vc1(0)=Vo. Vc2(0)=0. there is zero initial current through inductor Lk. Please provide mathematical equations derived from basic KVL and KCL equations happening here during resonance.
I need to show that after quarter period of resonance one of the C1 will discharge completely and C2 will charge to Vo.
Thanking in anticipation.
EDIT1 Assume C1=C2= Cp
I have attached the following circuit in which resonance is happening. Initial voltage of capacitor C1 is Vo , ie Vc1(0)=Vo. Vc2(0)=0. there is zero initial current through inductor Lk. Please provide mathematical equations derived from basic KVL and KCL equations happening here during resonance.
I need to show that after quarter period of resonance one of the C1 will discharge completely and C2 will charge to Vo.
Thanking in anticipation.
A quarter period starting for where? At t=0, or when the circuit reaches steady state?. If at t=0, you need to do a transient analysis, so you need to set up the differential equation. What is the period of Vo? How are you going to achieve resonance, by changing the L C values, or the frequency of Vo?
A quarter period starting for where? At t=0, or when the circuit reaches steady state?. If at t=0, you need to do a transient analysis, so you need to set up the differential equation. What is the period of Vo? How are you going to achieve resonance, by changing the L C values, or the frequency of Vo?
I have attached the following circuit in which resonance is happening. Initial voltage of capacitor C1 is Vo , ie Vc1(0)=Vo. Vc2(0)=0. there is zero initial current through inductor Lk. Please provide mathematical equations derived from basic KVL and KCL equations happening here during resonance.
I need to show that after quarter period of resonance one of the C1 will discharge completely and C2 will charge to Vo.
Thanking in anticipation.
EDIT1 Assume C1=C2= Cp
Question: How can a current source at the resonant frequency send current through a parallel tank circuit when its impedance is infinity? Isn't that like a unstoppable force trying to push an immovable object?
Question: How can a current source at the resonant frequency send current through a parallel tank circuit when its impedance is infinity? Isn't that like a unstoppable force trying to push an immovable object?