Thank you, Steve.
Could someone please comment on the following part? Thanks.
Taylor series is a kind of power series where coefficients are derivatives. A function f(x) is approximated using Taylor series around a fixed point, 'a', and as the function is evaluated at points away from 'a', error would increase. I'm assuming finite number of terms. In other words, Taylor series approximates a function locally around a fixed point. On the other hand, Fourier series or transform approximates a function over its defined domain and not around a fixed point. In other words, Fourier series or transform approximation is more of global. I understand comparing Taylor series and Fourier series is more like comparing oranges and apples but I'm trying to make a very general comparison between the two.