Thanks, so anyway, for Sync Buck Bottom FET, Cgd must be << Cgs. But as we know, if the d(Vgd/dt) is high then Cgd appears to be higher since Cgd(apparent) = i.(d(Vgd)/dt). So yes, its not just Cgd that we must look at...but Qgd. And we must review Qgd at the actual Vin. The higher that the Buck's Vin is...the lower must be the ratio of Cgd/Cgs.
In the attached sim we see how the ringed capacitor being lower reduces the spurious turn-on of the low side FET.
And of course, tying in with the top post......Logic level FETs are much more susceptible to this spurious turn-on, simply because their Vgs(th) is so much lower. And when logic level FETs are used in Synch Bucks with Vin's > 30v, then things just get worse and worse.
Basically if you are doing a Synch Buck with Vin > 30V, then you really want to be throwing logic level FETs into the Bin. They are way to
susceptible to spurious turn ON when the top side FET turns ON.
Also, its noteable that Qgd/Qgs must be <1, though during spurious turn on in sync bucks, the lower FET actually has its gate shorted to ground by the driver, (and via any series resistance which would be low value)....so in fact, it makes you wonder why "Qgd/Qgs < 1" really applies in real life?