I interpreted his question to be a copy of illustrations from a text and then the yellow highlighted part is his answers to the questions posed.I dont know if these were PG's answers or an illustration he copied.
The intent was to compare a weightless Pulley with Mass of 10kg to a flywheel pulley with same moment of inertia and notation of acceleration was also incorrect..
I can't say I'm following what your point is. What you say above is correct. Geometry and mass distribution do affect angular momentum and rotational acceleration, but this "affect" is captured by the rotational inertia, which is specified. Energy conservation always holds, but we can analyze the situation using torques/forces and ignore the energy. The rocket is using chemical energy to provide the force, and the mass on the rope is using gravitational energy to provide the force. The specification of the forces from the rocket and the weight on the rope is enough to solve the problem.The geometry and mass distribution will affect the angular momentum and rotational acceleration only according to the conservation of energy since the angular momentum is increasing while the potential energy is decreasing.
Nothing has been stated about these parameters which affect angular acceleration.
Your answers are correct above, but for one mistake. Watch your units. Angular acceleration has units of rad/s/s, not rad/s.
Why does a long lever makes the job easier? What's the reason behind this? Thank you.
You are correct about the mass of the weight on the rope will add inertia to the system and should be included in a more precise calculation. I interpreted the analysis to be highly idealized. The mass of the rocket was ignored and so I would also ignore the mass of the rope and weight. But of course you could add those into the calculation. I guess the thing to realize is that an inertia of 20 kg m^2 is quite large and the mass of 2 kg is not the major source of inertia.
If you do want to include the mass, then simply realize that F=ma is an added force putting tension on the rope. Approximately, you can estimate the order of magnitude of the added force by considering your answer of 0.5 rad/s/s. This acceleration translates to a linear acceleration of 0.5 m/s/s and since the mass is 2 kg, then the force is 1 N, which changes the torque by 1 Nm. As I mentioned this is relatively small compared to the 10 Nm net torque, but you could include the effect if you choose. I leave it to you to modify the analysis to include the force from the accelerating mass.
The lever changes the distance and force required to lift an object, but keeps the work (or energy) required the same. Work is the integral of force over distance, or simple force times distance in simple situations. So when you use a lever, the Work=Force x Distance is the same, but you generally use the lever to reduce the force and increase the distance to do your work.
Why does this make it easier? Simply because humans and machines have limited force that they can apply, but if the total work is within the capability of the machine doing the work, then the lever brings the required force into the range of capability of the machine.
By the way, Archimedes can't lift the earth, not only because the lever will break and he has no where to stand, but also because a human does not have the stored energy to do that much work.
Suppose that in the seesaw picture, the person weighing 1000 N is already sitting on one side of the seesaw and the given side is touching the ground. The other guy who just weighs 500 N can balance the seesaw and raise the heavy guy from the ground to same height as his. How and why?
PG, you are misreading what I actually said. Please go back and reread what I wrote about these things very carefully. Also, I'll try to clarify a little bit about what you are misreading.I understand that but I still don't really find the comparison justified. Although moment of inertia is considered to be an equivalent of mass in angular motion, we still cannot add moment of inertia to mass. "20 kg m^2" means a point mass of 20 kg rotating at a distance of 1 m from rotation axis and well "2 kg" mass is just 'typical' mass!
In my humble opinion, the angular acceleration for pulley due to counterclockwise torque of 10 Nm cannot be 0.5 rad/s/s because this value was calculated just considering the moment of inertia of pulley. I believe that we need to find the effect of torque on both pulley and mass simultaneously then the angular acceleration of pulley will exactly translate into linear acceleration of the mass.
But still let's do it the way you are suggesting. You are saying that the value for angular acceleration which I calculated to be 0.5 rad/s/s gets translated to 0.5 m/s/s. According to F=ma for linear motion, F=1 N. You said that this force changes the torque by 1 Nm although I don't exactly understand what it really means. Probably you are saying that this 1 Nm clockwise torque gets subtracted from 10 Nm counterclockwise torque and therefore the net torque is 9 Nm counterclockwise. If this is really what you were suggesting then the fallacy in our calculation is quite apparent.
Ok, JimB answered this in a way appropriate for engineers and scientists. We develop an understanding of nature, and create a mathematical model of the approximate way we expect experiments to behave. Here, approximate means within experimental accuracy. In this case we have Newton's laws to help us analyze the situation using various idealizations of the real situation. Using our mathematical model, which we now understand very well, we can do calculations to demonstrate how the smaller guy can balance the bigger guy.Suppose that in the seesaw picture, the person weighing 1000 N is already sitting on one side of the seesaw and the given side is touching the ground. The other guy who just weighs 500 N can balance the seesaw and raise the heavy guy from the ground to same height as his. How and why? Thank you.
Method 1: Straightforward Force/Torque Analysis
Let the rocket force be represented by Ft=30N and the tension in the rope by Fr, which we will need to calculate. The pulley inertia is I=20 kg m^2 and the mass is m=2 kg, suspended in a gravitational field with g=10 m/s/s.
The torque equation becomes α=dω/dt = (R Ft - R Fr) / I , which leaves only the rope tension as an unknown to be calculated/represented.
The rope tension is caused by the force from the mass, and the mass has two components of force that cause rope tension, gravitational force (mg), and inertial force m dv/dt. Hence, Fr=m g+m dv/dt, where v is the linear velocity of the mass.
However, linear velocity of the mass v can be related to the rotational acceleration of the pulley by v=R ω, and since R does not change in time then dv/dt = R dw/dt=Rα.
We can now substitute this into the original torque equations and do some algebra to find that α=( R Ft - R m g )/ ( I + m R^2)
In our case we get α = ( (1) 30 - (1) 2 (10) ) / ( 20 + 2 (1)^2 )=10/22=0.4545 rad/s/s
This answer is lower than the 0.5 rad/s/s , as you predicted.
As to why this is true, that is a harder question from a scientific point of view. Ultimately, we never get to the final "why" in physics, but we can always try to probe deeper. In this case, we could consider that the see-saw is not really an ideal rigid object. It is composed of atoms. There are atomic forces (electrical in nature) that keep the board together as one piece and provides forces and torques within the system. We could try to analyze every atom and do a free body diagram for each and every one, but this is of course impossible for a person to do and would take a computer an impractical amount of time to complete. But, in principle we could try to imagine how all these electrostatic forces are interacting to create a nearly rigid board that transmits forces and torques to the people involved in having fun on a see-saw.
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?