This equation describes a straight line with negative slope. If you look at an actual I-V curve for a solar panel, for example the one presented by OP in the first post, it doesn't really look as a straight falling line. Rather, it goes absolutely flat until it reaches relatively high voltages, then drops down rather quickly in a very curvy way.
Thanks a lot, KISS, NG, MrAl, for your help.
In next of couple of days I will read about MPPT whenever I get free time to get general understanding of its working.
One last query for now. Suppose, I'm using constant voltage algorithm for a buck MPPT. Then, I decide to use another algorithm such as perturb and observe, would this mean that I need to make changes to the circuit too? Or can I just load a new software into the microcontroller and keep using previous circuit. Thanks.
Regards
PG
One last query for now. Suppose, I'm using constant voltage algorithm for a buck MPPT. Then, I decide to use another algorithm such as perturb and observe, would this mean that I need to make changes to the circuit too? Or can I just load a new software into the microcontroller and keep using previous circuit. Thanks.
Sorry but i find this reply to be just a little strange because if you read my other posts you'd see i mentioned the actual curve already. I was trying to present a similar type of device that would be easier to understand, not a working model of a solar array which we already have.
If you read two more sentences you would have seen this too:
"So you can see that when we draw load current we take current away from the array and so the voltage across the array goes down. Keep in mind that this is a very rough linear approximation to the array but it works very similar to this in principle."
I suggested constant voltage because it's very simple and only requires two voltage sensors and one temperature sensor, and can be done even without microcontroller.
If you're willing to experiment with different algorithms, which is a very interesting task in itself, I would suggest to install at least the following sensors:
- Current sensor (shunt + amplifier) between panel and input capacitor
- Voltage sensor at panel/input capacitor
- Temperature sensor at the panel
- Current sensor at the output (shunt + amplifier)
- Voltage sensor at the battery
- Temperature sensor at the battery
If your goal is to find a good algorithm, you should be able to measure these through ADCs capable of measurements at 50-100kHz (10kHz at very least). Also, make sure that your microcontroller can process information at this speed.
One last query for now. Suppose, I'm using constant voltage algorithm for a buck MPPT. Then, I decide to use another algorithm such as perturb and observe, would this mean that I need to make changes to the circuit too? Or can I just load a new software into the microcontroller and keep using previous circuit. Thanks.
I'm sorry, I didn't mean to offend you. IMHO, your explanation (and formula) makes a solar panel look sort of like a "bag of current" with total quantity "I", so that the load can take all or part of the total current and remainder of the current is available for other loads. Using this explanation, someone might think that he can connect a battery to the panel and it'll start taking "iLoad" current from it, then connect a second battery which will start taking another "iLoad" portion of the total current and so on until the whole "I" current is taken. Of course, other people may look at your explanation differently.
this is good enough for an illustration of how the power goes up as we approach the max power point and then goes back down as we pass it.
Next we could look at the relationship between the max power point voltage and the open circuit voltage for several different arrays.
NorthGuy said:For the night disconnect you need a latching relay. You could use a diode, but that would mean loosing diode drop continuously.
NorthGuy said:Disconnecting when a battery is charged is not a good idea. Say, you have some loads connected to the battery. If you disconnect, loads will be discharging the battery while you're wasting solar energy. The standard way is to drop voltage to about 2.2V/cell and let loads use solar energy without dischargng the battery.
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?