OK, try thinking about it this way:
We have a signal, it is a sine wave, it has one component in its frequency spectrum, if we feed that signal into an ADC what number will the ADC give us?
Who knows, it is anybodies guess because the signal is continually varying.
(As I am writing this, I think I have just realised why you are confused....)
So we have a "sample and hold" circuit, which takes the instantaneous value (the sample part) of our sinewave signal and effectively converts it to DC (the hold part).
The ADC can now convert the value into a number.
(MrAl has just posted as I am trying to find a way to express all this.)
In your picture jim5 the output of that sampling gate will look like the spectrum shown.
BUT, you are considering an ADC input which is a SAMPLE and HOLD circuit, which is effectively creating a DC value for which there is no complex spectrum.
Are we getting there yet?
JimB
We have a signal, it is a sine wave, it has one component in its frequency spectrum, if we feed that signal into an ADC what number will the ADC give us?
Who knows, it is anybodies guess because the signal is continually varying.
(As I am writing this, I think I have just realised why you are confused....)
So we have a "sample and hold" circuit, which takes the instantaneous value (the sample part) of our sinewave signal and effectively converts it to DC (the hold part).
The ADC can now convert the value into a number.
(MrAl has just posted as I am trying to find a way to express all this.)
In your picture jim5 the output of that sampling gate will look like the spectrum shown.
BUT, you are considering an ADC input which is a SAMPLE and HOLD circuit, which is effectively creating a DC value for which there is no complex spectrum.
Are we getting there yet?
JimB