The lack of a phase sequence detector cost my company dearly many years ago. I was working on one of the early FLIR (infrared) systems for the Army and it used a 3-phase, 400Hz powered helium cryogenic cooler for the focal-plane detectors. We had in working fine in one lab using 3-phase power from the wall-plug outlet supplied by the 400Hz rotary inverter in the building.
We then moved it to a larger lab in a different building and plugged it into the inverter outlet in that building. We turned in on and it seemed to be operating normally. Someone noticed that it sounded a little different but didn't think too much of it. They kept waiting for it to cool down, which usually took about 15-20 minutes at which point the IR picture starts to appear, but the display stayed dark. They started checking the unit and then realized that the cooling fans (also 3-phase) were rotating in the wrong direction, indicating incorrect phase. They immediately shut off the power, but it was too late. It no longer worked, even after they rewired the connector to correct the phase. They took the focal plane apart and found that the cooler rotating in the wrong direction acted to heat the detectors instead of cooling them, and they had gotten hot enough to ruin their detection ability.
Don't know what that cost to fix but it weren't cheap, as all 350 detectors were individually mounted and hand wired (it had a mechanical horizontal scan to generate the picture from a vertical array of detectors).
Of course after that, they closed the barn door, and installed a 3-phase sequence detector to remove the power to the cooler if the phase wasn't correct.